

Healthcare Transformation from Data and System Perspectives

Beng Chin OOI www.comp.nus.edu.sg/~ooibc

Contents

- Healthcare Problems
- Challenges
- Our Healthcare Data Analytics Stack
 - GEMINI
 - Cleaning, De-biasing, Regularizing
 - ForkBase
 - Storage Engine for Collaborative Analytics and Forkable Applications
 - Foodlg / Foodhealth
 - Pre-diabetes app
 - MediLOT
 - A blockchain solution
- Conclusions

FIRST OPINION

An Obamacare success: financial penalties reduce hospital readmission rates

By JASON H. WASFY, FRANCESCA DOMINICI, and ROBERT W. YEH / DECEMBER 27, 2016

The Mnistry Of Health (MOH) Office for Healthcare Transformation (MOHT) (formed in 2018) aims to shape the future of healthcare in Singapore. This is done by identifying, developing and experimenting with game-changing systems-level concepts and innovations in the key areas of health promotion, illness prevention and the delivery of care.

Al in Health Grand Challenge (Ongoing large grant call by Al.SG – 3 x5 mil in the first phase and 1 x 20 mil in the second phase)

"How can Artificial Intelligence (AI) help primary care teams stop or slow disease progression and complication development in 3H – *Hyperglycemia (diabetes), Hypertension (high blood pressure) and Hyperlipidemia (high cholesterol)* patients by 20% in 5 years?"

3H Problems: Where/what Can We Contribute?

Healthcare System/Al's Objective

 Publoced

A unified end-to-end engine to integrate all available data sources and provide a holistic view of medical data, from where we support all sorts of medical applications.

- Increase the accuracy of diagnoses
- Improve preventive medicine
- Optimize insurance product costs
- Better understand the needs for medications
- Cut costs on healthcare facility management etc

This is beyond typical database query processing

The Reality of Exploiting AI

- The actual implementation of the ML algorithm is usually less than 5% lines of code in a real, non-trivial application
- The main effort (i.e. those 95% LOC) is spent on:
 - Data cleaning & annotation
 - Data extraction, transformation, loading
 - Data integration & pruning
 - Parameter tuning
 - Model training & deployment
 - •

• This blurs the line between DB and "non-DB" processing, and calls for better integration

These are what we have been doing!

The BIG Data Analytics Pipeline*

Challenges

Identifying Common Challenges

China Healthcare Providers/Hospitals

杭州南萧山区中医院 浙江中餐幕大学附属江南医院

ZTEICT

中兴网信

..... more

Challenges

Time-consuming data extraction

- Different storage formats
- Unstructured data

Difficult data cleaning

- Missing data
- Duplications
- Different coding standards

Doctors-in-the-loop data annotation (medical expertise)

- Missing code filling
- Standardized diagnoses

Bias in observation data

• Observation data is biased from the actual conditions of the patients

Complexity of medical features

- Numerous concepts
- Heterogeneous data
- Complex relations

Demanding data storage requirements

- Multi-source and heterogeneous data formats
- Reuse of datasets
- Provenance

Challenge 1: Data Preprocessing

time-consuming data extraction different storage formats, un-structured data

difficult and expensive data cleaning missing data, duplications, different coding standards

medical expertise required for data annotation

standardizing diagnoses, missing code filling

Challenge 2: Bias in EMR Data

Challenge 3: Complex Features Relations

Challenge 4: Dataset Management in Healthcare

- Dataset Cleansing
 - Track evolution history to ensure correctness
- Dataset Transformation
 - Save different formats for future reuse
- Dataset Sharing/redundancy
 - Avoid data redundancy to reduce storage overhead
- Dataset Security
 - Impose access control to healthcare data

Challenge 5: Data Prior

- Existing ML algorithms work well for image classification and sequence prediction, but not healthcare problems
- Images are not random pixels
 - Neighbor pixels are most corelated --> CNN
 - Color channel prior --> haze removal/super-resolution
- Sequences are not random numbers/words
 - Latent state at each time point --> RNN LSTM
- Prior for healthcare?
 - How to find and formulate?
 - How to create algo/model to utilize them?

Matching Data and Model/Algorithm

- No Free Lunch Theorem [1997]
- Checklist for useful AI:
 - Lots of data
 - Flexible models
 - Efficient system and algorithm design
 - Powerful priors that can defeat the curse of dimensionality
- Opportunities come from utilizing data distribution information
 - Can we learn prior from data? (Domain-specific AutoML)

Development Pipeline

 Parameterize existing data processing solutions to meet the characteristics of healthcare data

Data Acquisition:

Hospital Data Genome Data Medical KB CT/MRI Images

Integration& Augmentation:

<u>AE/D Data Cleaning</u> <u>Collaborate Analytics</u> <u>KB Data Enrichment</u> Image Augmentation Understanding& Interpretation:

EMR Bias Resolving EMR Imputation EMR Embedding EMR Pattern Mining Application Deployment:

Standard Model Pool Adaptive Regularizer <u>KB Hashing Model</u> Bagging & Evaluation

Extensive Raw Data

Cleaned Data with Rich Semantics Extracted Effective Feature Sets

Medical Insights

Enabling Global Optimization

• SINGA – RAFIKI (MLaaS) -- PANDA mainly for healthcare

	PANDA Healthcare	Current Al systems
Aim	Defining new AI problems	Optimizing for existing AI problems
Iteration	Doctors take part in the development circle	Data scientists as the agent
Key Techs	Efficient declarative interaction	ML model and platform
Domain Knowledge	Instilled by doctors	Understood by data scientists
Delivery	Explored together with doctors	Plain model outputs

J. Gao, W. Wang, M. Zhang, G. Chen, H.V. Jagadish, G. Li, T.K. Ng, B.C. Ooi, S. Wang, J. Zhou: <u>PANDA: Facilitating Usable AI Development.</u> https://arxiv.org/pdf/1804.09997.pdf 2018.

W. Wang, S. Wang, J. Gao, M. Zhang, G. Chen, T.K. Ng, B.C. Ooi, J. Shao: Rafiki: Machine Learning as an Analytics Service System. 2018 20

Healthcare Data Analytics Stack

GEMINI (*GEneralisable Medical Information* aNalysis and *Integration* platform)

Z.J. Ling, Q.T. Tran, J. Fan, G.C.H.Koh, T. Nguyen, C.S. Tan, J.W.L. Yip and M. Zhang. GEMINI: An Integrative Healthcare Analytics System PVLDB 7(13): 1766-1771, 2014.

Al Implementation at NUH

Example: Readmission Prediction

DISCOVERY AI SandBox

Making Healthcare Data Usable

J. Dai, M. Zhang, G. Chen, J. Fan, K.Y. Ngiam, B.C. Ooi: Fine-grained Concept Linking using Neural Networks in Healthcare. ACM SIGMOD 2018

X. Cai, J. Gao, K. Y. Ngiam, B. C. Ooi, Y. Zhang, and X. Yuan. Medical concept embedding with time-aware attention. IJCAI 2018.

If a doctor wants to analyze the medical records related to "chronic kidney disease" ...

- Two reasons cause the healthcare data usability.
 - Different writing styles.

Real-world healthcare data			
2 recent cva			
posterior circulation transient ischaemic infarct			
multi infarct cva with dementia			
massive ischemic stroke with hemorrhagic conversion	refer to	concept code	Canonical description
acute stroke infarct			Cerebral infarction due to unspecified
2 rt sided cva with gd recovery 1994 5		163.50	occlusion or stenosis of unspecified
r groin hematoma			cerebral artery
cerebellar stroke			
acute left pontine cva			
acute cva left ic laci			
acute cva left sided weakness			
basal ganglion infarct			

- Two reasons cause the healthcare data usability.
 - Different writing styles.
 - Different medical standards.

Standard	Concept code	Canonical description
ICD-10-CM	K64.2	Third degree hemorrhoids
ICD-9-CM	455.0	Internal hemorrhoids without mention of complication
ICD-9-CM	455.1	Internal thrombosed hemorrhoids
ICD-9-CM	455.2	Internal hemorrhoids with other complication
ICD-9-CM	455.5	External hemorrhoids with other complication
ICD-9-CM	455.6	Unspecified hemorrhoids without mention of complication
ICD-9-CM	455.7	Unspecified thrombosed hemorrhoids
ICD-9-CM	455.8	Unspecified hemorrhoids with other complication

Real-world healthcare data

internal haemorrhoid prolapsed			
haemorrhoid bleeding	ligated		
3 degree pile			
prolapsed haemorrhoid			
3rd degree prolasped piles, not thrombosed			
thrombosed internal haemorrhoid			
3rd degree pile x 1			
haemorrhoid			
3rd degree external hemorrhoids			
hemorrhoids prolapsing piles			
haemorrhoids no complication			
prolapsed and thrombosed haemorrhoid at 4 clock			

- Two reasons cause the healthcare data usability.
 - Different writing styles.
 - Different medical standards.
- To improve the healthcare data usability, we need a linker that is able to automatically link a medical record to a unified concept ontology.

Neural Concept Linking

• We have developed a neural concept linking framework to accomplish the healthcare concept linking.

Neural Concept Linking

Word representations

Example Results

We cleaned 13 years of NUHS data – 90 % done by machine, 10% done by human

Resolving "bias"

K. Zheng, J. Gao, K. Y. Ngiam, B. C. Ooi and W.L.J. Yip: <u>Resolving the Bias in Electronic Medical Records.</u> ACM KDD, 2017.
Adaptive Lightweight Regularization Tool for Complex Analytics. Z. Luo, S. Cai, J. Gao, M. Zhang, K.Y. Ngiam, G. Chen and W. Lee. ICDE, 2018.
Knowledge Driven Regularization. K. Yang, Z. Luo, J. Gao, J. Zhao, B.C. Ooi, B. Xie. 2019

Similar Pattern and yet Different Results

- Patient1 always visits hospital due to respiratory infection
 - Can we conclude that Patient1 has respiratory infection every day?
- Patient2 always visits hospital due to chronic kidney disease
 - Can we conclude that Patient2 has chronic kidney disease every day?
- What is the difference?

Bias in EMR Data

- If a doctor or analyst want to analyze the EMR data with missing values, they may employ traditional imputation methods directly
- \rightarrow Misinterpretation

Bias in EMR Data

- Bias recorded EMR series is different from patients' actual hidden conditions
 - Patients tend to visit hospital more often when they feel sick
 - Doctors tend to prescribe the lab examinations that show abnormality
- To Solve Bias Challenge EMR Regularization
 - Transform the biased EMR series into unbiased EMR series

Resolving Bias in EMR Data

- Condition Change Rate (CCR)
 - measures how a medical feature is likely to change from its condition in the previous observation

- Observation Rate (OR)
 - measures the probability that a medical feature is exposed at a time point based on its actual condition at that time point

Resolving Bias in EMR Data

Imputation accuracy evaluation

- Benefits for analytic tasks
 - In-hospital mortality prediction, Diagnosis by category prediction
 - Disease progression modelling

Disease Progression Modeling

Comparably Stable Progression Trajectory Severity Age 70 60 Race Jm . ,Pr> 50 ÷ Gender **GFR Value** 40 f_2 Education 30 . . . 20 Time 10 0 0 2012-06-29 2012-08-28 2012-10-27 2012-12-26 2012-01-01 2012-03-01 2012-04-30 Time **Prediction Time Point Deteriorating Progression Trajectory Medical Features** 70 Diag Kidney Diabetes 60 Disease 50 Lab **GFR Value** Cholesterol HbAIC Blood Pressur 40 Med Insulin 30 Proc 20 Amputation 10 t_1 t_2 t_3 t_4 0 S_1^i 2012-01-01 2012-03-01 2012-04-30 2012-06-29 2012-08-28 2012-10-27 2012-12-26

Time

 s_k^i time

• • •

 s_2^i

 S_3^l

Time

Severity Labeled

Advice to Doctors on Intervention

- Our model would suggest to guarantee the monitoring for Patient $1 \rightarrow$ may need dialysis or kidney transplant
- Our model would suggest healthcare workers to provide more aggressive interventions to Patient 2 in advance
- Our model would suggest to guarantee the monitoring for Patient 3

Facilitating Data Sharing and Provenance

S. Wang, T. T. A. Dinh, Q. Lin, Z. Xie, M. Zhang, Q. Cai, G. Chen, B.C. Ooi, P. Ruan: <u>ForkBase:</u> <u>An Efficient Storage Engine for Blockchain and Forkable Applications.</u> VLDB 2018

ForkBase Designs

ForkBase Storage Stack

SIRI Indexes & POS-tree

- An Index Class: Structurally-Invariant Reusable Indexes
 - Structurally Invariant, Recursively Identical, Universally Reusable ...
- An Implementation: Pattern-Oriented-Split Tree

Content-determined Structure (-> Deduplication)

> Native Merkle Tree (-> Tamper Evidence)

Probabilistically Balanced Tree (-> Query Efficiency)

Blockchain Data Model in ForkBase

- KV Store
 - Customized structures
 - Linked block
 - State Merkle tree
 - State delta
 - ...
 - Hard to implement
- ForkBase
 - Achieve with built-in types
 - UBlob
 - UMap
 - ...
 - Easy to maintain
 - 10+ lines for each structure

Analytic-Ready Blockchain Backend

- Analytic on blockchain is expensive
 - Need to scan whole block history to extract information
- Built-in data types in ForkBase to support fast analytics

Prevention is Better Than Cure

L. Long, W. Wang, J. Wen, M. Zhang, Q. Lin, B.C. Ooi: Object-Level Representation Learning for Few-Shot Image Classification. arXiv preprint arXiv:1805.10777. 2018

Lifestyle InterVENtion Programme (LIVEN)

The effect of a <u>behaviour-based lifestyle</u> change program using <u>combined face and remote sessions</u> on weight, diet intake and physical activity level in people at-risk of diabetes: a Randomised Controlled Trial

Face to Face Sessions

Diabetes Prevention Programme

Effecting Behavioral Change

Feedback

- Quick and Easy way to record dietary intake
- A deep learning image-based food recognition for a faster, closest food match and handy recording
- Self-monitoring with pre-set goals and intuitive nutrition information
- Peer-to peer monitoring of dietary and physical activity goals
- Daily and weekly reports of progress

Remote monitoring by healthcare professionals for timely and meaningful feedback

Diabetes Prevention

Healthy Diet + Exercise

Administrator/Dietician Portal

- Dietary Review + Chat
 - Review user's weekly meal (photo) history

0	KK Women's and Children's Hospita
	SingHealth

Realtime Chat with Dietician

provides instant feedback to users

Foodhealth/Foodlg

STEP 1

Collect training images from heterogeneous sources and label them via crowdsourcing

STEP 2

Off-line

Train deep learning models for food recognition

STEP 3

Food recognition and health analysis using images and other information from the Foodlg app

On-line

Personalizing and Decentralizing Healthcare

AI + BlockChain + Cloud + big Data

Analytics/ DataScience

BigData/ DBMS

Objectives:

- 1. Transparency
- 2. Accountability
- 3. Auditability
- 4. Governance
- 5. Security

6. ...

BlockChain enabled Healthcare

- BlockChain (BC) acts as a tamper-evident storage for archiving Healthcare Records from different healthcare providers
- BlockChain acts a "Central Healthcare Record Repository"
- It enables Data Provenance, Data Analytics, and Medical-care everywhere based on patient's preference
- It may help transform Healthcare management and research

The MediLOT Solution

1. Holistic

Every patient will have a complete longitudinal health record: their own health story that they can access at any institution

2. Patientcentric

The patient holds his/her own private key and has fine control over who can view their medical records

3. Personalised

Using an advanced analytics overlay (**GEMINI**), MediLOT facilitates personalised treatment strategies

4. Decentralised

Patients' data is stored in different locations, eliminating the risk of a single catastrophic breach

Dual BlockChain Schema

Public (Ethereum)

Allows for transfer and crediting of ERC20 LOT tokens (MediLOT utility token)

On-Chain Scalability

Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, K.-L. Tan: <u>BLOCKBENCH: A Framework for Analysing Private Blockchains.</u> ACM SIGMOD 2017 A. Dinh, R. Liu, M. Zhang, G. Chen, B.C. Ooi, J. Wang: <u>Untangling Blockchain: A Data Processing View of Blockchain Systems.</u> IEEE TKDE, 2018.

MediLOT's Technologies

Dual Blockchain

Ethereum & Hyperledger++

- Enhanced Hyperledger with scalable consensus and sharding
- Throughput up by 15x

Analytics GEMINI

The underlying healthcare suite that supports big data analytics and personalised medicine

Data Storage

ForkBase

Proprietary storage with rich semantics, immutability and data sharing, Blockchain optimised native storage system

Conclusions

Minority Report In Healthcare?

- Healthcare is a complex but impactful/meaningful Application
 - Domain Knowledge
 - Verification and Validation a tedious process
- A good (example) application that calls for better integration of AI/ML and Database technologies, and possibly Blockchain technologies
- We have addressed some of the challenges, and have implemented:
 - GEMINI (DICE, CDAS, epiC, Apache SINGA, ForkBase) is being used by 2 major hospitals in Singapore
 - Foodhealth (foodlg) is used by 3 hospitals in Singapore
 - MediLOT is in testnet phase and used by hospitals in China
- Objectives:
 - To predict, prevent/pre-empt, personalize for more effective healthcare
- Be Good. If you can't, be Safe. Live well ...

Acknowledgements

- Collaborators: Gang Chen, H.V. Jagadish, Kee Yuan Ngiam, James Yip++
- Collaborators (ex-students): Meihui Zhang, Wei Wang, Jinyang Gao, Chang Yao
- Visitors: Divy Agrawal, H.V. Jagadish, Dave Maier, Renée Miller, Tamer Özsu, Amit Sheth, Wang-Chien Lee, Wang-Chew Tan, Ju Fan, ++
- Current set of 6-10-10 bosses: Zhaojing Luo, Kaiping Zheng, Jian Dai, Sheng Wang, Shaofeng Cai, Lei Zhu, Qian Lin, Pingcheng Ruan, Qingchao Cai, Anh Dinh, Zhongle Xie, Piaopiao Feng ++
- Ex-Research Fellows and RAs/Engineers/Students:

Thanks!

