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Forecasting Big Time Series: Old and New

@ Introduction to Forecasting

@ Classical approaches (local, learning one time series at a time)
© Modern approaches (globally finding patterns)

@ Building forecasting systems
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Out of Scope, but we still want to point it out ...

Pattern finding, outlier/anomaly detection, modeling, forecasting and similarity indexing are
closely related:

o For forecasting, we need to estimate
> patterns/rules/models
» similar past settings

e For outlier/anomaly detection, we can use forecasts
» outlier = too far from our forecast

Reference
.
Smart Analytics for Big Time-series Data
Yasushi Sakurai, Yasuko Matsubara and Christos Faloutsos
http://www.cs.kumamoto-u.ac. jp/~yasukoTALKS/17-KDD-tut/
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Within the Scope, but we still want to point it out ...
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Dr. Dionysys Larder, Prof
Philosophy & Astronomy, Univer

Rail travel at high speed is not po
unable to breathe,

Western Union internal memo

ible,

r of Natural
ity College

Drill for oil? You mean diillinto the
ground to try and find oil? You're crazy!

Associates of Edwin 1. Drake refusing his

suggestion to dril for ol in 1859 (Later that

year, Drake succeeded in drilling the first oil
vell )

“This telephone has too many shortcomings
to be seriously considered as a means of
communication.

=3

“veryone acquainted with the subject will
recognize it as a conspicuous filurcs

Henry Morton, president of the Stevens
Institute of Technology, on Edisons light bull

The idea that cavalry will be replaced by
these iron coaches is absurd. It s litde short
of treasonous.

Comment of Aide-de-camp to Field Marshal

Flight by machines heavier than it is
unpractical and insignificant, if not utterly
impossible.

Simon Newcomb, Canadian- American

astronomer and mathematician, 18 months
Defore the Wright Brothers flight at Kittyhawk

The hosse is here to stay, but the automo-
bile is only a nov

The president of the Michigan Savings Bank,
advising Henry Ford's lawyer not to invest in
the Ford Motor Company

Haig, at tank

“The cinema is little more than a fad. Tes
canned drama. What audiences really want
to see is flesh and blood on the stage:
Charlic Chaplin, actor, producer, director, and
studio founder

“The wireless music box has no imaginable
commercial value. Who would pay for a
message sent to no one in particular?
Associates of commercial radio and television
pioncer, David Sarnoff, responding to his call
for investment in the radio

Television won't last because people will
soon get tired of staring at a plywood bos
every night

Darryl Zanuck, movie producer, 20th Century

“There is no reason for any individual

to have a computer in his home:

Ken Olson, president, chairman and founder
of Digital Equipment Corporation

“The truth is no online database will
replace your daily newspaper.

Clifford Stoll, Newsweck article entitled
The Internet? Bah!
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Within the Scope, but we still want to point it out ...

Decexner 26, 1906.) PUNCH, OR THE LONDON CHARIVARL 451

Forecast for 1907:
Telegraph kills live communication!

First Principle
Forecasts are always wrong.

1V.—DEvELOPMENT OF W 1§ Hype Park.

[These two figures are not communicating wit eceiving an amatory message,
and the gentleman son ]

T
https://medium.freecodecamp.org/

worst-tech-predictions-of-the-past-100-years-c18654211375

Faloutsos et. al. (Amazon) August 28th, 2018 6 / 140


https://medium.freecodecamp.org/worst-tech-predictions-of-the-past-100-years-c18654211375
https://medium.freecodecamp.org/worst-tech-predictions-of-the-past-100-years-c18654211375

Within the Scope, but we still want to point it out ...

Prediction is very difficult, especially about the future. — Niels Bohr
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Within the Scope, but we still want to point it out ...

Prediction is very difficult, especially about the future. — Niels Bohr

Second Principle

Whenever possible, formulate the problem in a different way.
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Introduction to Forecasting: Old and New
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Forecasting Problems at Amazon |: Retail Demand

‘Weekly shipped units and forecast

@ Problem: predict overall Amazon retail demand years into the future

@ Decision Problems: topology planning, market entry/segment analyses
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Forecasting Problems at Amazon II: AWS Compute Capacity

@ Problem: predict AWS compute capacity demand

@ Decision Problem: how many servers to order when and where
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Forecasting Problems at Amazon IlI: Staff Planning

ahbgdbossty, M,

@ Problem: predict attendance rate of fulfillment center staff

@ Decision Problems: how to schedule staff and when to hire how much staff

Faloutsos et. al. (Amazon)



Forecasting Problems at Amazon IV: Retail Product Forecasting

@ Problem: predict the demand for a each product available on Amazon

@ Decision Problems: how many units to order when and where, when to mark products
down
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What is Forecasting?

Observed time series Forecast

Australian beer shipments: weekly time series (07 Jan 1970 to 05 Dec 1973)

http://www.broo.com.au/australian-beers
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Forecasting Problems: General Setup

zt

predictions
sample paths

Y

xt 1

o Predict the future behavior of a (univariate) time series z; ; for item ¢ € I given its past

2305+ -1 2 T—2, 2, T—1, %, 7 = P(2i 741, 27425 - - - ZiT+h)

Faloutsos et. al. (Amazon)

August 28th, 2018

14 / 140



Forecasting Problems: General Setup

zt

predictions
sample paths

Y

xt

o Predict the future behavior of a (univariate) time series z; ; for item ¢ € I given its past

2305+ -1 2 T—2, 2, T—1, %, 7 = P(2i 741, 27425 - - - ZiT+h)

@ Make optimal decisions

best action = argmin Ep[cost(a, z; 741, 2742, - - - ZiT+h)]
a
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Forecasting Problems: Old and New

small number of time series
sufficient historical data
limited meta data

hand-crafted models

statistician and econometrician heavy

We refer to these problems as strategic forecasting problems.
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Forecasting Problems: Old and New
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Examples: demand for products of a retailer, work force cohorts of a company in its locations,
compute capacity needs per region and server type.

We refer to these problems as operational forecasting problems.
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Operational forecasting problems: characteristics & approaches

cold start/new items
short cycles
burstiness, sparsity

high degree of automation of downstream systems

ratio of people/time series < 1
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Operational forecasting problems: characteristics & approaches

cold start/new items
short cycles
burstiness, sparsity

high degree of automation of downstream systems

ratio of people/time series < 1

Two extremes (to be covered in Part 5):
e complex pipeline of simple models (adapt traditional models to new problems)
@ simple pipeline including end-to-end learning with complex models
August 28th, 2018 17 / 140



Metrics to Evaluate Point Forecast

W

Observed time series Forecast
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Metrics to Evaluate Point Forecast

True future time series

Observed time series Forecast

Absolute Error : e; = |z — Z|

@ Mean Absolute Error (MAE): mean(e;) (over forecast horizon h)
@ Mean Absolute Percentage Error (MAPE): + 3, e// |2

@ Root Mean Square Error (RMSE): {/mean(e?)
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From Point Forecasts to Probabilistic Forecasts

To paraphrase George E. P. Box
All forecasts are wrong, but some are useful ... J

True future time series

Observed time series Forecast

Point forecasts are typically insufficient for decision making.

best action = argmin Ep|[cost(a, 2 741, 2,742, - - - Zi T+h))
a
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From Point Forecasts to Probabilistic Forecasts

To paraphrase George E. P. Box
All forecasts are wrong, but some are useful ... J
True future time series
| A
Observed time series Probabilistic
Forecast

Point forecasts are typically insufficient for decision making.

best action = argmin Ep [cost(a, z; 741, 2i, 742, - - - 2i,T+h))
a
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From Point Forecasts to Probabilistic Forecasts

Probabilistic Forecast
What is the distribution of the future time series values P(Z;)? J

—— median

o P50 Forecast: 50% of the time z;
@ P90 Forecast: 90% of the time 2

IN A
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Evaluating Probabilistic Forecast

Probabilistic Forecast

P90 forecast means 90% of the time the true value 2; < Z (or precisely 299 ) J

—— median

Quantile Loss

Z!

ol — q'(zt_gg)» Zt 2 2
! >

(1—(])'(,/2;]—2,5), 21(51

z{: Forecast at quantile ¢

Zt

Hit Rate / Calibration

Percentage of z; < z{

Faloutsos et. al. (Amazon)



Quantile Loss and Calibration: Two Sides of the Coin

Quantiles Loss
P90 forecast means 90% of the time the true value z; is smaller than the forecast.

{09 . (Zt — ,/Z’\t), Zt
€t = . .
01 0 (Zt — Zt), +

~

zZ

VWV

2t

Quantile loss is proper scoring rule, which means optimizing this metric
leads to an accurate P90 forecast.
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Quantile Loss and Calibration: Two Sides of the Coin

Calibration
P90 forecast means 90% of the time the true value z; is smaller than the forecast.

~

(Percentage of 2z < z;) ~ 90%

Calibration alone is not enough ...

True target time series 5,5, 5,5, 5, ...
P50 Forecast 0, 100, 0, 100, 0, 100, ...

Perfectly calibrated (calibration = 50%), but horrible forecast ...

Faloutsos et. al. (Amazon) August 28th, 2018 23 / 140



Probabilistic Forecast

Goal

The goal of probabilistic forecasting is to maximize the sharpness of the predictive distribution
subject to calibration.

[Gneiting et al., 2007]

@ Sharpness: the width of the predictive intervals

@ The forecast distribution should be as close as possible to the true distribution

Continuous Ranked Probability Score (CRPS)

1
CRPS = / QUANTILE LOSS(q)dq
0

Optimizing CRPS leads to sharp and calibrated forecast.
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Evaluating Forecasts: Backtesting

Compute forecast accuracy on observed data for a fixed time series i:

Tralning data Test data
O ® ® @ & ® ® ® ® @ ° ® 9 ® ¢ & ®© @ ® o 0 B S @ W ={ne

W

Observed time series Forecast
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Evaluating Forecasts: Backtesting

Compute forecast accuracy on observed data for a fixed time series i:

Tralning data Test data
O ® ® @ & ® ® ® ® @ ° ® 9 ® ¢ & ®© @ ® o 0 B S @ W ={ne

W

Observed time series Forecast

Accuracy now depends on the start of test data.

Faloutsos et. al. (Amazon) August 28th, 2018 25 / 140



Evaluate forecast: better backtesting
Compute forecast accuracy (to be defined) on observed data for a fixed time series i:

—a— o 0o 0 — — 8 — — — — — — — — — — —= fime
—— i — — —— — — — — — —— —————— —
—e 9o 8 o 0 oo — — & — — — — — — — — — — — — —
—e o s o o oo — — & — — — — — — — — — — — — —
— 80909080 —— 88— —— — — ——————— —
—% & & & & & 5 & — — & — — — — — — — — — =
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— 0000900 08— —————— —
——0 00 0 0 9 0 0 0 0 0 0 00— — 8 —————i— —
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— 99 9 0 0 0 9 6 0 0 0 0 0 0 0 0 0 0 0 o e o — —

Flgu reé. [Hyndman and Athanasopoulos, 2017]

Faloutsos et. al. (Amazon) August 28th, 2018 26 / 140



Some Remarks on Accuracy

Alternative to MAPE, we can introduce scale-independent accuracy by scaling using

o the error of a benchmark/standard method (e.g., MRAE)

o the forecast accuracy of a benchmark method (e.g., ReIMAE)

@ in-sample random walk (e.g., MASE)

e evaluating spatio-temporal forecast with Optimal Transport [Roberts et al., 2017]

More in [Hyndman and Koehler, 2006; Kolassa and Schuetz, 2007]
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Some Remarks on Accuracy

Alternative to MAPE, we can introduce scale-independent accuracy by scaling using

o the error of a benchmark/standard method (e.g., MRAE)
o the forecast accuracy of a benchmark method (e.g., ReIMAE)
@ in-sample random walk (e.g., MASE)

e evaluating spatio-temporal forecast with Optimal Transport [Roberts et al., 2017]
More in [Hyndman and Koehler, 2006; Kolassa and Schuetz, 2007]
Practical subtleties:

@ how to evaluate given missing values (e.g., out-of-stock situations, errors in recording of
events)?

@ deal with -/0 and 0/0
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Some Remarks on Accuracy

Potentially three different accuracy measures:
@ loss-function for training the model
@ forecast accuracy metric for backtesting

@ forecast accuracy measure for reporting to stakeholders

Metric needs to be simple, intuitive. Insist on it being a proper score.
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Some Remarks on Accuracy

Potentially three different accuracy measures:
@ loss-function for training the model
@ forecast accuracy metric for backtesting

@ forecast accuracy measure for reporting to stakeholders

Metric needs to be simple, intuitive. Insist on it being a proper score.

Crucial to understand the down-stream consequences of the forecasts:

best action = argmin Ep[cost(a, 2 741, 2,742, - - - Zi T+h))
a

More accurate forecasts may not lead to better downstream decisions. |
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Selected References

== [Makridakis et al., 1998]. Classic introductory book.
.

FORECASTING

[Hyndman and Athanasopoulos, 2017]. Recent introductory book.

The Logic
of ogistcs

~ [Larson et al., 2001; Simchi-Levi et al., 2013]. Introduction to practical Supply
Chain problems including forecasting.

FORESIGHT"™ 1.c crcnuumons covmin o srveo romscnsrna

General business forecasting journal:
https://foresight.forecasters.org/
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Classical Methods for Forecasting: Old and New
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Forecasting Problems: General Setup

zt

predictions
sample paths

Y

xt

@ Predict the future behavior of a time series z; for item i € I given its past

e ZiT—2, 2 T—1, %1 = P(%i141, %1425 - - - Zi T+h)

@ Make optimal decisions

best action = argmin Ep[cost(a, 2; 741, 2742, - - - % T+h)]
a

We drop the item index ¢ whenever the context is clear.

Faloutsos et. al. (Amazon)
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Simple Forecasting Methods

@ Input: a sequence of observations z1, z2, ..., 21

@ Output: forecasts for all time steps in forecast horizon h: T+ 1,T+2,..., T+ h
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Simple Forecasting Methods

@ Input: a sequence of observations z1, z2, ..., 21
@ Output: forecasts for all time steps in forecast horizon h: T+ 1,T+2,..., T+ h

@ Naive method: future forecasts are equal to the last observed value.

zret =2y, t=1,2,... h

— Training target
— Naive method

40000

35000 -

30000

25000

20000

15000
0

10 20 30 40 50 60
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Simple Forecasting Methods (contd.)

@ Naive seasonal method: future forecasts are equal to the observed value from last season.

Training target
— Naive seasonal

30000 -

40000

35000

25000

20000

15000
0
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Simple Forecasting Methods (contd.)

@ Mean method: future forecasts are equal to the average of all observed values.

1
ZT+t:T(Zl+22+-.-+ZT), t=1,2,...,h

40000

— Training target
— Mean method

35000

30000

25000 |

20000

15000
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Forecasting with Linear Regression

@ Assume our prediction Z; is a weighted combination of D D D
Z z, Z3 ees Zr

features x11,...,%¢ D, %

D
Zr = Z WqTt,d
d=1

@ The features z; 4 are assumed to be given (= hand designed) E"’] E"] E‘]

28500
see

2000

Faloutsos et. al. (Amazon) August 28th, 2018 35/ 140



Forecasting with Linear Regression
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Forecasting with Linear Regression

A

@ Goal: find weights w1, ...,wp so that our prediction Z; is
close to the true z;.

@ Least-squares finds an optimal w* by minimizing

T T D 2 -
w* = argmin Z (2t — 2,;)2 Z <zt Z wdxt,d> EVJ EVJ EVJ
w t=1 t=1 d=1
@ w™* can then be used to make forecasts:
zt:ngmad t=T+1,....T+h
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Features for Linear Regression

The features used in such a linear model are themselves time series 1 g, %24, ..., T+ H,d-

@ Trend features (linear, logarithmic, exponential, logistic, etc.)

@ Seasonal features: dummies (one-hot indicators), periodic features (e.g. Fourier, wavelet,
etc.)

© Lagged target values (e.g. use z;—1 and z;_o as features to predict z;)
@ Seasonal lagged target values (e.g. use z;_g to predict z;, with S = 12 for monthly data)
© (Weighted) average features (e.g. mean(z;—7.4-1))

Note that (4) and (5) are just special cases of (3). However, using features of type (4) or (5)

designed using domain knowledge (e.g. seasonality) one can achieve the same effect with less
parameters.
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Examples
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Examples
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From Algorithm to Probabilistic Model

It is far better to foresee even without certainty than not to
foresee at all. — Henri Poincaré
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From Algorithm to Probabilistic Model

minZet, with e, = (3 — z)? <= maXHP(et), with e; ~ N (e;|0, %)
t t
True future time series

Observed time series Forecast
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From Algorithm to Probabilistic Model

minZet, with e; = (3 — %)% <— maXHP(et), with e; ~ N (es|0,0%)
t t
True future time series

Observed time series Forecast

Error
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From Algorithm to Probabilistic Model

minZet, with e; = (3 — %)% <— maxl_[P(et)7 with e; ~ N (es|0,0%)
t t
True future time series

Observed time series Forecast
Error
PDF CDF Quantile Function F~*

.
08
015 04

010 -2
02

.

-4 -2 I 2 4 -4 -2 0 2 4 0o 02 04 06 08 10

Faloutsos et. al. (Amazon)



From Algorithm to Probabilistic Model

minZet, with e; = (3 — %)% <— maxl_[P(et)7 with e; ~ N (es|0,0%)
t t
True future time series

Observed time series

COF Quantile Function F~!

-4 -2 0 2 4 4 2 0 2 4 00 02 04 06 08 10
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From Algorithm to Probabilistic Model

minZet, with e; = (3 — %)% <— maxl_[P(et)7 with e; ~ N (es|0,0%)
t t
True future time series

Observed time series

COF Quantile Function F~!

4 2 0 2 4 00 02 04 06 08 10
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Linear Regression as a Probabilistic Model

@ Assume the following model for the data, introducing a /atent (unobserved) variable y;

D
Yt = Z WqTt d
d=1
Ze =Yt + € e ~N(0,0?)

o Equivalently, P(z|y:) = N (zt|ys, 02), so that

1 e?
P = 2 = 2 = _
(ztlyr) = N (zt|lys, 0°) = N(et|0,07) 5 exp { 502 }

@ In terms of the features x; 4 we have

P(zi|ae) = (Zt del’td, )
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Linear Regression as a Probabilistic Model
e Finding the least square solution w* == maximum likelihood estimation (MLE)

T T

w* = argmax H P(z¢|ze) = argmaxz log P(zt|x¢)
Yoot=1 woot=1

T 2
= argmax Z —log V2mo? — (zt - Z wd:vt,d> /(20%)
wot=1 d

T 2
= argmax Z — (Zt — Z wd.’L‘t,d)
woo=1 d

2
t

e

T

= argmin Z e?
Yoot=1

@ We can also find the optimal o2 in the same way
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Generalized Linear Models (GLM)

e The Gaussian noise assumption P(z|y;) = N (z¢|y:, o%) is a modelling choice!

@ Other choices for P(z|y;) (observation model, also called likelihood in Bayesian models)
are possible

@ Common choices are:

» Poisson, Negative-Binomial (count data)
» Beta (data in (0,1) interval)

» Bernoulli (binary data)

» Student-t (heavy-tailed real data)
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Latent Linear Models: Likelihood P(z|y:)

@ In daily real-world sales data, 98% of the values are 0

100

Percent

0 1 2 3 4 5 6
Demand / d

7 8 >=9

@ Could use (not a good fit): Gaussian, Gamma, Poisson, Negative Binomial (NB)
@ Better choices: Zero-inflated Poisson/NB, multi-stage likelihood [Seeger et al., 2016]

Faloutsos et. al. (Amazon)
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Examples

Faloutsos et. al. (Amazon)
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Features for Linear Regression

The features used in such a linear model are themselves time series 1 g, %24, . .., T74+H,d-

© Trend features (linear, logarithmic, exponential, logistic, etc.)

@ Seasonal features: dummies (one-hot indicators), periodic features (e.g. Fourier, wavelet,
etc.)

© Lagged target values (e.g. use z;—1 and z;_o as features to predict z;)
© Seasonal lagged target values (e.g. use z;_g to predict z;, with S = 12 for monthly data)
© (Weighted) average features (e.g. mean(z;—7.t—1))

Note that (4) and (5) are just special cases of (3). However, using features of type (4) or (5)
designed using domain knowledge (e.g. seasonality) one can achieve the same effect with less
parameters.

Fewer parameters —> less training data needed! Less prone to overfitting!

Faloutsos et. al. (Amazon) August 28th, 2018 45 / 140



Lagged Target Values / Autoregressive Model

Idea: Use lagged values z;_; (for I =1,2,3,...,p) as features to
predict z;

@ In a linear model we have z; = > wqzriq + b+ €

@ By using lagged targets as features, i.e. x;q = 2z_q for
d=1,2,...,p we get

p
2t = szzt_z +b+ ¢
=1

@ Each value is modelled as a weighed average of previous
values, plus noise

@ The noise is usually assume to be iid. Gaussian, ¢ ~ N(0, 0%)

@ This is the so-called Autoregressive Model (AR) of order p!

Faloutsos et. al. (Amazon)
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Lagged Target Values / Autoregressive Model

Idea: Use lagged values z;_; (for I =1,2,3,...,p) as features to
predict z;

@ In a linear model we have z; = > wqzriq + b+ €

@ By using lagged targets as features, i.e. x;q = 2z_q for
d=1,2,...,p we get

p
2t = szzt_z +b+ ¢
=1

@ Each value is modelled as a weighed average of previous
values, plus noise

@ The noise is usually assume to be iid. Gaussian, ¢ ~ N(0, 0%)

@ This is the so-called Autoregressive Model (AR) of order p!

Faloutsos et. al. (Amazon)
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Lagged Target Values / Autoregressive Model

Idea: Use lagged values z;_; (for I =1,2,3,...,p) as features to 7
predict z;

Zy Z3 Zy Zs Zg

@ In a linear model we have z; = > wqzriq + b+ € |

@ By using lagged targets as features, i.e. x;q = 2z_q for ‘
d=1,2,...,p we get

P L
2= wz—+b+e i
=1
@ Each value is modelled as a weighed average of previous
values, plus noise
@ The noise is usually assume to be iid. Gaussian, ¢ ~ N(0, 0%) Yaa
X
@ This is the so-called Autoregressive Model (AR) of order p! =2
X4,3
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Lagged Target Values / Autoregressive Model

Idea: Use lagged values z;_; (for I =1,2,3,...,p) as features to
predict z;

@ In a linear model we have z; = > wqzriq + b+ €

|
@ By using lagged targets as features, i.e. x;q = 2z_q for \
d=1,2,...,p we get

p
2t = szzt_z +b+ ¢

\ [
\\/4
=1
@ Each value is modelled as a weighed average of previous
values, plus noise
.. .. . 2 Xs5,1
@ The noise is usually assume to be iid. Gaussian, ¢, ~ N (0, 07)
X
@ This is the so-called Autoregressive Model (AR) of order p! >
X5,3
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Lagged Target Values / Autoregressive Model

Idea: Use lagged values z;_; (for I =1,2,3,...,p) as features to
predict z;

@ In a linear model we have z; = > wqzriq + b+ €

@ By using lagged targets as features, i.e. x;q = 2z_q for
d=1,2,...,p we get

p
2t = szzt_z +b+ ¢
=1

@ Each value is modelled as a weighed average of previous
values, plus noise
@ The noise is usually assume to be iid. Gaussian, ¢ ~ N(0, 0%)

@ This is the so-called Autoregressive Model (AR) of order p!

Faloutsos et. al. (Amazon)
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Lagged Target Values / Autoregressive Model

Idea: Use lagged values z;_; (for I =1,2,3,...,p) as features to 7 2z, 73 74 | 2z zg
predict z; T

. \ \ | |
@ In a linear model we have z; = > wqzriq + b+ € A S D N

@ By using lagged targets as features, i.e. x;q = 2z_q for .
d=1,2,...,p we get

p
2t = szzt_z +b+ ¢
=1

@ Each value is modelled as a weighed average of previous
values, plus noise

@ The noise is usually assume to be iid. Gaussian, ¢ ~ N(0, 0%) Yea
@ This is the so-called Autoregressive Model (AR) of order p! Yoz
Xe,3
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Simple Forecasting Methods: Mean method

@ Mean method: future forecasts are equal to the average of all observed values.

1
ZT+t:T(Zl+22+-.-+ZT), t=1,2,...,h

40000

— Training target
— Mean method

35000

30000

25000 |

20000

15000
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Alternative to linear regression

Prediction is the weighted average of all observations

Zo = azq + (1 — a)?il

Zy=aznt+a(l—a)z +(1—a)z
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Alternative to linear regression

Prediction is the weighted average of all observations
Zo = azq + (1 — a)?il

Zz=azn+a(l—a)z + (1 —a)z;

71 and « are adjustable parameters
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Alternative to linear regression

Prediction is the weighted average of all observations

Zo = azq + (1 — a)?il

Zz=ant+al—a)zn+(1—-a)z;

71 and « are adjustable parameters

e ETS (Simple ExponenTial Smoothing): weighted average of all observations:
Zrap =azp +a(l —a)zp_1 + a(l — OZ)QZT_Q +- 4+ (1= a)T21

« is a smoothing parameter and Z is the prediction for ¢t = 1.
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ETS (contd.)

30000

40000 ; ; ; m :
— Training target I
— ETS (a=0.9) :
35000 ETS (a=0.1) | I
I
I
I
I

25000

20000

15000 ' ' '
0 10 20 30 40 50 60
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Simple Exponential Smoothing

o Forecast at time ¢ is adjusted to previous error

Zip1 = 2 + (2t — 2t),
—~— ———
previous forecast error in previous forecast
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Simple Exponential Smoothing

o Forecast at time ¢ is adjusted to previous error

Zip1 = 2 + (2t — 2t),
previous forecast error in previous forecast

40000

T T T
— Training target 1
— ETS (@=0.9) .
— ETS (a=0.1) 1
I
I
I
I

35000

30000

25000

20000

15000
0
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Simple Exponential Smoothing (contd.)

Zt41 = Z + « (2t — %)
~—~ N—_——
previous forecast error in previous forecast

o Latent variable ¢; representing the "level” of the time series ¢

Forecast equation Zt =l

Error Correction b=l + oz — Zy),

~ ~ ~ ~

Z1 z9 z3 Zt

@ Adjustable parameters: a and ¢



Simple Exponential Smoothing (contd.)

Zt41 = Z + « (2t — %)
~—~ N—_——
previous forecast error in previous forecast

o Latent variable ¢; representing the "level” of the time series ¢

Forecast equation Zt =l

Error Correction b= b1 + a2zt — Zp),

~

<1

@ Adjustable parameters: « and ¢



Simple Exponential Smoothing (contd.)

Zt41 = Z + « (2t — %)
~—~ N—_——
previous forecast error in previous forecast

o Latent variable ¢; representing the "level” of the time series ¢

Forecast equation Zt =l

Error Correction b=l + oz — Zy),

~ ~

Z1 z9

@ Adjustable parameters: « and ¢



Simple Exponential Smoothing (contd.)

Zt41 = Z + « (2t — %)
~—~ N—_——
previous forecast error in previous forecast

o Latent variable ¢; representing the "level” of the time series ¢

Forecast equation Zt =l

Error Correction b=l + oz — Zy),

~ ~ ~

Z1 zZ2 z3

@ Adjustable parameters: a and ¢



Simple Exponential Smoothing (contd.)

Zt41 = 2t + « (2t — %)
~— ——
previous forecast error in previous forecast

@ Latent variable /; representing the "level” of the time series ¢

Forecast equation Zt =l
Error Correction b=l + oz — Zy),
lo [ ] lo| -+ [l
Z1 Zo 23 2
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Simple Exponential Smoothing (contd.)

Zt41 = 2t + « (2t — %)
~— ——
previous forecast error in previous forecast

@ Latent variable /; representing the "level” of the time series ¢

Forecast equation Zt =l
Error Correction b=l + oz — Zy),
lo [ ] lo| -+ [l
Z1 Zo 23 2

@ Adjustable parameters: a and ¢
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General Exponential Smoothing

@ l; is now an array representing unobserved patterns
» Level, Trend, various seasonal effects (repeating patterns)
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General Exponential Smoothing

@ l; is now an array representing unobserved patterns
» Level, Trend, various seasonal effects (repeating patterns)

Forecast equation Z = a?lt_l

Error Correction L=Fli1+9(z — %),
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General Exponential Smoothing

@ l; is now an array representing unobserved patterns
» Level, Trend, various seasonal effects (repeating patterns)

Forecast equation Z = atTlt_l

Error Correction L=Fli1+9(z — %),

@ a; F; depend on the pattern being modeled

@ g: and Iy will be learned from data
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Linear State Space Model

@ Statistical model: data generating process

» produce an entire probability distribution for a future time period
» compute prediction intervals with a given level of confidence
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Linear State Space Model

@ Statistical model: data generating process

» produce an entire probability distribution for a future time period
» compute prediction intervals with a given level of confidence

SSM:

Measurements z; = a?lt_l + €, €~ N(O, 02)

State transition 1l = Fyl;—1 + gier, 1o ~ N(uo, diag(ag)).
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Linear State Space Model

@ Statistical model: data generating process
» produce an entire probability distribution for a future time period
» compute prediction intervals with a given level of confidence

SSM:

Measurements z; = a?lt_l + €, €~ N(O, 02)

State transition 1l = Fyl;—1 + gier, 1o ~ N(uo, diag(ag)).

a

21
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Linear State Space Model

@ Statistical model: data generating process

» produce an entire probability distribution for a future time period
» compute prediction intervals with a given level of confidence

SSM:

Measurements z; = a?lt_l + €, €~ N(O, 02)

State transition 1l = Fyl;—1 + gier, 1o ~ N(uo, diag(ag)).

1o {0

a

21
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Linear State Space Model

@ Statistical model: data generating process

» produce an entire probability distribution for a future time period
» compute prediction intervals with a given level of confidence
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Linear State Space Model

@ Statistical model: data generating process

» produce an entire probability distribution for a future time period
» compute prediction intervals with a given level of confidence

SSM:

Measurements z; = a?lt_l + €, €~ N(O, 02)

State transition 1l = Fyl;—1 + gier, 1o ~ N(uo, diag(ag)).
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Linear State Space Model

@ Statistical model: data generating process

» produce an entire probability distribution for a future time period
» compute prediction intervals with a given level of confidence

SSM:

Measurements z; = a?lt_l + €, €~ N(O, 02)

State transition 1l = Fyl;—1 + gier, 1o ~ N(uo, diag(ag)).
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Linear State Space Model

@ Statistical model: data generating process

» produce an entire probability distribution for a future time period
» compute prediction intervals with a given level of confidence

SSM:

Measurements z; = a?lt_l + €, €~ N(O, 02)

State transition 1l = Fyl;—1 + gier, 1o ~ N(uo, diag(ag)).

@ Parameters: 1y, g; and o
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Linear State Space Models

@ Linear dynamical system: l; = Fl; 1 + g er ~ N(0,1)
@ Encompasses ARIMA and variants of ETS

@ Combine linear model and dynamical system to yield
2zt ~ P(ze|y)
yr =zl w+a'l_;.

ly = Fl;_ 1+ gey, .
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State Space Model

Linear State Space Model part: Feature-based part:

Uy = a?lt_l bt = ’lUT(L‘t
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State Space Model

Linear State Space Model part: Feature-based part:
Uy = a?lt_l bt = ’lUTZBt

Probabilistic model for data (likelihood): z; ~ P(z¢|us + by)
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State Space Model

Linear State Space Model part: Feature-based part:
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Probabilistic model for data (likelihood): z; ~ P(z¢|us + by)
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State Space Model

Linear State Space Model part: Feature-based part:
Uy = a?lt_l bt = ’lUTZDt

Probabilistic model for data (likelihood): z; ~ P(z¢|us + by)
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Additional parameter: w



State Space Model
Linear State Space Model part: Feature-based part:
Uy = a?lt_l bt = ’lUT.’I)t

Probabilistic model for data (likelihood): z; ~ P(z¢|us + by)
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State Space Model

Linear State Space Model part: Feature-based part:
Uy = a?lt_l bt = ’lUTZBt

Probabilistic model for data (likelihood): z; ~ P(z¢|us + by)

[2r]

Additional parameter: w
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Classical methods are good for strategic forecasting problems

Weekly shipped units and forecast

variable
| A

V‘vwf

2016-01 2016-07 2017-01
Date

Predict overall Amazon retail demand years into the future.

Time series have enough history, are regular and exhibit clear patterns.
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Classical models struggle with operational forecasting problems

['F

i

Predict the demand for a each product available at Amazon

Time series are irregular, only combined do they have enough history and exhibit clear patterns.

Faloutsos et. al. (Amazon

)
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The Classical Approach(es): Pros and Cons

PROS

@ De-facto standard; widely used
@ Decomposition — decoupling

o White box: explicitly
model-based

@ Embarassingly parallel

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

CONS

Requires lots manual work by
experts = hard to tune &
maintain

Cannot learn patterns across
time series = pipelines of
models must be used

Cannot handle cold-starts

Model-based: all effects need to
be explicitly modelled
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Selected References

@ General introduction: [Hyndman and Athanasopoulos, 2017]
o Classical textbooks: [Box et al., 2015; Brockwell and Davis, 2013]

@ Exponential Smoothing and State Space Models: [Hyndman et al., 2008; Durbin and
Koopman, 2012; Harvey, 1990]

@ Bayesian Structure Time Series Models: [Scott and Varian, 2014; Taylor and Letham,
2018]

e Forecasting with exponential smoothing and intermittent time series: [Snyder et al., 2012]

e Approximate Bayesian inference for combination of state space and GLMs: [Seeger et al.,
2016, 2017]

@ Hierarchical forecasting: [Ben Taieb et al., 2017; Athanasopoulos et al., 2017;
Wickramasuriya et al., 2018]

@ Automatic time series forecasting: [Hyndman et al., 2007]
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Modern Methods for Forecasting: Old and New
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From Local to Global ...

@ Old: local, one (preferable parsimonious!) model per time series

Faloutsos et. al. (Amazon)



From Local to Global ...

@ New: global, one large and complex/expressive model for all time series

Ahow e VAN A W e
o o TN G T

e R e

ANAANE SN e

S P R S
Frarl e e
ﬁﬁ’&«m\”ﬂ/ﬂ""“

T st A AN, NN
mﬁ“\/ﬂwi&@/\

;NN N NN

M3 Time series data visualization from [Hyndman, 2015]
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Time Series Decomposition: Recap

Underlying patterns in the time series data ; WWWWWMWWW”
o Level .

cata
o w0 @

@ Trend i, M“
@ Seasonal variations (repeating patterns) : :
Questions

@ How can we find common patterns across time series?

@ How can we do forecast based on the learned (latent) patterns?
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Matrix Decomposition

»
= N
P
=

M3 Time series data visualization from [Hyndman, 2015]

Each time series is a linear combination of the hidden (time series) components.
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Matrix Decomposition

@ Perform k-SVD on the time series matrix Z ~ ULV’
@ Use classical time series model such as ARIMA or ETS to forecast k£ hidden components
@ Linearly combine the forecasts of the hidden components yields the individual forecasts
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Temporal Regularized Matrix Factorization [Yu et al., 2016]

. Time- dependent variables
Time

X X new

Y Yoew | = F

Items

min @%Q(Y“ fi @) + AR (F) + A Ra(X)

@ Temporally regularization to encourage smoothness through time

@ Minimizing Lo loss without statistical assumption
@ Only producing point forecasts and can not handle missing data
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Tensor Decomposition: A Sample Problem

Forecast the sales for items in different locations at different time.

Faloutsos et. al. (Amazon) August 28th, 2018 65 / 140



Tensor Decomposition: PARAFAC

4 ]
5 S
R
S /store -+ / -+ /
c I — —— I
Q
g "
3
¢ 3 . v—
store Topic A Topic B Topic C
Sales record (shoes) (funiture) (media)

Generalization of matrix decomposition for multi-view data.
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Tensor Decomposition: PARAFAC

Time

Time
Store

~ | U | x X v

ltem Z Item

Zij(t) = U;,. X A(t) X V. 4

Store

Generalization of matrix decomposition for multi-view data.

Faloutsos et. al. (Amazon)



Selected References

Tensor decomposition and applications [Kolda and Bader, 2009]
Latent space model for road networks to predict time-varying traffic [Deng et al., 2016]
Autoregressive tensor factorization for spatio-temporal predictions [Takeuchi et al., 2017]

High-Order Temporal Correlation Model Learning for Time-Series Prediction [Jing et al.,
2018]

Parcube: Sparse parallelizable tensor decompositions [Papalexakis et al., 2012]
Fast mining and forecasting of complex time-stamped events [Matsubara et al., 2012]
Tensorcast: Forecasting with context using coupled tensors [de Araujo et al., 2017]

FUNNEL: automatic mining of spatially coevolving epidemics [Matsubara et al., 2014]
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Neural Network Forecasting: Old

International Journal of Forecasting
Volume 14, Issue 1, 1 March 1998, Pages 35-62

ELSEVIER

Forecasting with artificial neural networks:: The state of the art

Guogiang Zhang, B. Eddy Patuwo, Michael Y. Hu &

Research article

How effective are neural networks at forecasting and prediction?
A review and evaluation

Monica Adyaz, Fred Collopy

First published: 04 December 1998

Econometric Reviews

Econometric Publication details, including instructions for authors and subscription information:
hitp://www informaworld. com/smpp/title-content=t713597248

P An Empirical Comparison of Machine Learning Models for Time Series
Forecasting
Nesteen K. Ahmed; Amir F. Atiya*; Neamat £l Gayar; Hisham El-Shishiny*
* Department of Computer Science, Purdue University, West Lafayette, Indiana, USA * Department of
Computer Engineering, Cairo University, Giza, Egypt  Faculty of Computers and Information, Cairo
University, Giza, Egypt ¢ IBM Center for Advanced Studies in Cairo, IBM Cairo Technology
Development Center, Giza, Egypt
O

Online publication date: 15 September 2010

Vel Nemed s

techniques wins
Faloutsos et. al. (Amazon)

and New — Timeline

1969
1986
1988

199x

1998

2000
200x
2012

2014

2014-

2018

Weather forecasting with adaptive linear neurons (Hu)
Backpropagation (Rumelhart et al.)

NNs using backpropagation applied to forecasting;
positive results (Werbos)

Many authors applying mostly feed-forward models to
various forecasting problem (single time series)

Review articles: “The outcome of all of these studies
has been somewhat mixed”; “While ANNs provide a
great deal of promise, they also embody much
uncertainty.”

M3 competition — simple methods declared the winner
Less work on NN-based forecasting methods

AlexNet wins ImageNet competition — start of the
Deep Learning revival (Krizhevsky et al.)

Generating Sequences With RNNs (Graves); seq2seq
architecture (Sutskever et al.)

Modern deep learning techniques (RNNs, CNNs) get
applied to forecasting (across time series)

M4 competition: combination of NNs and classical
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Neural Network Forecasting: Old and New

“Consensus” in the Forecasting Community: NNs don't work!

This supports the general consensus in forecasting, that neural networks (and other highly non-linear and nonparametric
methods) are not well suited to time series forecasting due to the relatively short nature of most time series. The longest

series in this competition was only 126 observations long. That is simply not enough data to fit a good neural network
— Rob Hyndman on M-challenges, 2018

model.
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Neural Network Forecasting: Old and New

“Consensus” in the Forecasting Community: NNs don’t work!

This supports the general consensus in forecasting, that neural networks (and other highly non-linear and nonparametric
methods) are not well suited to time series forecasting due to the relatively short nature of most time series. The longest

series in this competition was only 126 observations long. That is simply not enough data to fit a good neural network

model. — Rob Hyndman on M-challenges, 2018

Our View

Neural networks are great for learning complex patterns from many time series in operational
forecasting problems!
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From Linear Regression to Feed-Forward Neural Networks

Output Output Output Output

ANV / T\

Ty T3 om gy, T3 T1 xp T3 TL owy, T3
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From Linear Regression to Feed-Forward Neural Networks

Output Output Output Output

AANVAA / T\

T owy T8 oxp g, T3 X1 @y T3 Tl xy T3

2t = o(w/ (c(WLy (@(Wy(--- Wi a))))) := DEEP-NET ()
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Feed-Forward Neural Networks (Multi-layer Perceptron (MLPs))

Zt,1 Z¢,2 Z¢,3 Tt+41,1 Ti41,2 Tt4+1,3

Faloutsos et. al. (Amazon)

@ Linear model 4+ non-linear hidden layers

@ Each neuron in a hidden layer computes an affine
function of the previous layer, followed by a
non-linear activation function,

hl,j =0 (Wl—l’—jhl—l + bm‘)

@ FF Neural Networks are flexible general function
estimators

@ More (and larger) hidden layers — more complex
functions




Feed-Forward Neural Networks (Multi-layer Perceptron (MLPs))

@ Main advantage over linear models: Can learn
complex input-output relationships

= Less manual feature engineering
@ Main disadvantage: more data needed for training

o Careful tuning (e.g. of regularization, learning rate,
etc.) might be necessary for good results

@ Sensitive to scaling of inputs

Zt,1 Z¢,2 Z¢,3 Tt+41,1 Ti41,2 Tt4+1,3

Faloutsos et. al. (Amazon)



Training Neural Networks

General recipe

Pick a class of functions f(x;6) and learn the parameters 6 by minimizing some notion of
error on a training set,

0* = argmin Y _ L (z;, f(x;,0))
o

e Optimization algorithm of choice: Stochastic Gradient Descent (SGD)

@ For each iteration £ =1,2,3,...

© Randomly pick a minibatch of examples iy, 142,...,ip

© Compute the batch loss Li, = >, L (2, , f(xi,,0))

@ Compute the gradient of the loss g = VoL (9)

© Update the parameters 0 = 0,1 — ngx,

O (Optional but recommended: Adjust the learning rate )
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Loss Functions

In supervised learning, one key modelling choice is the loss function.

In the forecasting context, the loss function compares a forecast to the truth (on
historical training data where the truth is known).

@ For point forecasts, a loss function compares two real numbers, e.g. Z; vs. z,

€t = (315 - Zt)2

For distribution forecasts, a loss function compares a forecast distribution F} to a real
number 2, e.g., negative log likelihood.
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Convolutional Neural Networks

e Convolutional Neural Networks (CNNs) = NNs that
use convolutional layers

o Typical CNN model architectures combine
convolutional layers with other layer types

@ CNNs with 2D convolutions are extremely
successful in computer vision applications

= encode spatial invariance

@ 1D convolutions are a promising alternative to
RNNs for sequential data

= encode temporal invariance, “stationarity”

Figure credit: Vincent Dumoulin, Francesco Visin - A guide to
convolution arithmetic for deep learning;
https://github.com/vdumoulin/conv_arithmetic
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Convolutional Layers

Weights / Filter / Kernel
Here: Kernel width = 3

Output
hy| | hy || h3| hy | hs| he
Vi
W3 | Wz | Wy
[y
0 0 |0 x4 xp X3 X4 X5 @ Xg
| I
\f ‘r‘
Padding Input

@ The output h; of a neuron j in a convolution layer
is a discrete convolution of the inputs x with the

layer's weigths/filter w.

@ For a one-dimensional convolution with a kernel

with width D we have

D
hj = Z WL j—d
d=1

@ Padding is used shift the input relative to the

output and change the behavior around the edges

(causal vs. non-causal)

Faloutsos et. al. (Amazon)
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Causal vs. Non-Causal Convolution

Causal Convolution

Output

[ 1] ] ][] [ 1] ]

L Weights / Filter / Kernel
Here: Kernel width = 3

CACRCRENENEN A
— Y |

Padding Input

Faloutsos et. al. (Amazon)

Non-Causal Convolution

Output

] ] ] 1

s s

CACHENENEAESEAIESIES
| i |
T Y

Padding Input
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1D Causal Convolution

1 1] [ ][] o
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1D Causal Convolution
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1D Causal Convolution
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1D Causal Convolution
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1D Causal Convolution

oo ]fo]lx]

Faloutsos et. al. (Amazon)



1D Causal Convolution
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Dilated Causal Convolution and WaveNet [Van Den Oord et al., 2016]

ot OO OO0000000000000 099 o Dilation increases receptive field

Hidden /

o : :
6000000660600 000600608 Forecast is generated in an

Lar . .
v /l / autoregressive fashion
Hidden

D000 DO0OO0OD0OO © 000 @ Can be used as encoder or decoder in

Layer o
/ l / sequence-to-sequence (next section)
c[) o/o

Hidden . .
©ceoo T ©00 T © @ More complex structures including

Layer o
/ /I gating and residual links [Van
mt @ © Q000000000 00000 DenOordetaI.,2016]

(@]
Q@
o
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Dilated Causal Convolution and WaveNet [Van Den Oord et al., 2016]

opt @ @ © O OO OO0 OGO OO

Hidden
e Q00000000 0CO0CDO0QCOQO0OQ

Hidden

T 000000000000000

Hidd
P 000000000000000

nmt @ @ O 000000000000 O®O

Figure credit: WaveNet: A Generative Model for Raw Audio; https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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Recap: MLP for Forecasting

Output Output Output Output

AW

1 Z2 x3 T To o &g Z1 ZTo €3

z; = DEEP-NET(x;)

Faloutsos et. al. (Amazon) August 28th, 2018

80 / 140



Recap: MLP for Forecasting

Output Output Output Output

AW

Ty T3 om g Ty T3 R
z; = DEEP-NET(x;)

How about the sequential relationship?
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Recap: State-Space Models for Forecasting

.= Output 6____,Output ..=—> Output —> Output
' @/ 3 ' @/ 53 7/
2R 77
> ‘;lt—l — lt —p EEEE N Ee—  —

hi=l_1+a-¢
thlt-l-’wTiBt-i-Et

Can we do the same with NNs?
August 26th, 2018 81 / 140



From Feed-forward NN to Recurrent NN

Output

x1 To T3
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From Feed-forward NN to Recurrent NN

Output Output

AR

T 2 3 T To T3
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From Feed-forward NN to Recurrent NN

Z1 2 T8 1 xp T3 1 xy T3
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From Latent State (Exponential Smoothing) to Recurrent NN

Current hidden state h; combines

@ the previous hidden state h;_1

@ input features z;

and goes into

—crf ()

e tanh (r)

p
V1422 1

— Zarctan ()

RECURRENT NEURAL NETWORK

Source: Wikipedia

O

A a
> 1 > Ly —>
A r

@)

h; = o(Oohi—1 + 0124)

Zt = O’(th)

Faloutsos et. al. (Amazon)
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Central idea: Exponential Smoothing

today = yesterday’s information 4+ new knowledge
STATE-SPACE MODEL RECURRENT NEURAL NETWORK

he f—> Q© @

v A 4

Q

A y A A

O @® © @®

v

hi—1

v

()

i\
A
o
L
\ 4
>
~
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Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]

) ) ®

T t t
I\
Ct—1 X & g . »| Ct
A Lebell, A
il (o] [&m] (o] L
S J

I |
© & &)

HTTP://COLAH.GITHUB.IO/POSTS/2015-08-UNDERSTANDING-LSTMs/

WHAT AND WHY?
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Long Short-Term Memory (LSTM): What?

)
T

)

T
N ™
Ct—1 X & g . »| Ct
A bebsl], A
il (o] (&l [o] N
/ J

|
©

Cy=ay - Ci_1 + B x o(Bohi—1 + 012¢)

®

&)

HTTP://COLAH.GITHUB.IO/POSTS/2015-08-UNDERSTANDING-LSTMs/

current state = forgot gate x old stuff + input gate x new stuff.

The same exponential smoothing idea!

Faloutsos et. al. (Amazon)
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Long Short-Term Memory (LSTM): Why?

&

Ea

@

Faloutsos et. al. (Amazon

- [

)

unroll

WHAT DO YOU WISH TO HAPPEN

Back Propagation through Time

@
r'

®
r

(23)

A

A\ 4

hs3

— N — ht

A

(3)

August 28th, 2018

87 / 140



Long Short-Term Memory (LSTM): Why?

WHAT DO YOU WISH TO HAPPEN

Back Propagation through Time
LS A

y 'y A

L_t_—l- hi ——{ hy

A L 3 A A A

v

h3 — O E N e— ht
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Long Short-Term Memory (LSTM): Why?

WHAT DO YOU WISH TO HAPPEN

Back Propagation through Time

S
—
>
[\V]
>=
W

— E N — ht
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Long Short-Term Memory (LSTM): Why?

&

Ea

@

Faloutsos et. al. (Amazon
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unroll

WHAT REALLY HAPPENS

nt decays exponentially fast!
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Long Short-Term Memory (LSTM): Why?

WHAT REALLY HAPPENS

ent decays exponentially fast!

A

L_t_—l- hi ——{ hy

A L 3 A A A

4
>
w

— E N e— ht
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Long Short-Term Memory (LSTM): Why?

WHAT REALLY HAPPENS

ent decays exponentially fast!

A

L_t_—l- hi — hy

A L 3 A A A

v
>
w

— E N — ht
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Long Short-Term Memory (LSTM): Here is Why!

® ®
T

A T
< 4 [ Y
— Ct—1 % @ > Ct
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ht—l > ht
J J
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HTTP://COLAH.GITHUB.IO/POSTS/2015-08-UNDERSTANDING-LSTMs/

0
LSTM ' =diag(fy) c=/fOc1+iog
%5
Canonical RNN 5 LER— hy = o(Oohi—1 + 0121)
t—1
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Back to Forecasting

Canonical (One-to-One) Seq2Seq (Many-to-Many)

e Canonical (One-to-One) RNN: DeepAR [Flunkert et al., 2017], AR-MDN [Mukherjee
et al., 2018], Deep LSTM [Yu et al., 2017a], ...

@ Sequence-to-Sequence (Many-to-Many) models: Diffusion Convolutional RNNs [Li et al.,
2018], MQ-RNN [Wen et al., 2017], ...
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Canonical RNN Structure (One-to-One)

fttﬂftl—)zt

AN
]

Q Training sequence
Canonical (One-to-One)

How well does the prediction reconstruct the the observed time series?

Faloutsos et. al. (Amazon) August 28th, 2018 91 / 140



Sequence to Sequence or Seq2Seq (Many-to-Many) Structure

[ {21,--‘ 7ZT5} = {zTe-Hv"' 7ZT5+T¢1}

Encoding Sequence Decoding Sequence

Seq2Seq (Many-to-Many)

How well does the prediction reconstruct the decoding sequence conditioned on the
encoding sequence?
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Sequence to Sequence or Seq2Seq (Many-to-Many) Structure

[z, zan = A{eng, o 2nym}

Encoding Sequence Decoding Sequence

Seq2Seq (Many-to-Many)

How well does the prediction reconstruct the decoding sequence conditioned on the
encoding sequence? Conceptually close to multivariate regression
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Canonical RNN Structure: DeepAR [Flunkert et al., 2017]

T1 2 T3 xp oxy, Ty Tl xy T3 Tl my T3
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Canonical RNN Structure: DeepAR [Flunkert et al., 2017]

T1 2 T3 xp oxy, Ty Tl xy T3 Tl my T3
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Canonical RNN Structure: DeepAR [Flunkert et al., 2017]

Zt

Zt—1 .
h,_1| * Previous state
x; | » Current features

Zt—1 ] « Last observed value

hy
|1__| Autoregressive Input!
@
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Canonical RNN Structure: DeepAR [Flunkert et al., 2017]

cug
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Canonical RNN Structure: How do we do forecast?

forecast?

Output

N

Output

Ty

Faloutsos et. al. (Amazon
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Canonical RNN Structure: How do we do forecast?

T ) z3

Faloutsos et. al. (Amazon

)

Use samples!

\icorecast?

.

x1 To T3
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Sequence to Sequence (Seq2Seq) Structure: Many-to-Many

fencoder : {217 e 7zTe} — hTe
fdecoder : h'T,.j — {zTe—i-la te >ZT5+Td}
Encoding Sequence Decoding Sequence
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Seq2Seq: RNN-MLP [Wen et al., 2017]

Encoding Sequence Decoding Sequence
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Seq2Seq: RNN-RNN

SUT I

b

Encoding Sequence Decoding Sequence
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Seq2Seq: Causal CNN-RNN

zZ2 Zt
f-‘
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Encoding Sequence

Faloutsos et. al. (Amazon)

Decoding Sequence
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Seq2Seq: Training

o Input:

Forecas!

time

—— demand

et

> time series (targets) z:'s: encoding and decoding
» input features: encoding x;'s and decoding u's

Faloutsos et. al. (Amazon

)
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Seq2Seq: Training

Forecast time

—— demand

AN

o),

> time series (targets) z:'s: encoding and decoding
> input features: encoding x;'s and decoding u's
@ Slicing windows across item and time (temporal)
@ Trained by minimizing certain metrics (negative loglikelihood, L1 /Lo loss, quantile loss,
etc.)
August 28th, 2018 100 / 140
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Seq2Seq: Prediction

Faloutsos et. al. (Amazon
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Seq2Seq: Prediction

Forecas

time

—— demand

2\

bl

.

@ target z; is unobserved after the forecast time

Faloutsos et. al. (Amazon
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Seq2Seq: Convolutional LSTM [Xingjian et al., 2015]

Encoding Network Prediction

ConvLSTMj

ConvLSTM;

LSTM ¢ =fi®Cca_ 14+ O tanh(ch s xy + Whe - i1 + bc)
ConvLSTM Gt = fi ©Ci1 + 14t © tanh(Wm * Ty + Whe * he_1 + bc)

@ Input is time series of images (tensor data)

@ Convolution happens in the spatial domain
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Seq2Seq: Tensor-Train RNNs [Yu et al., 2017b]

=]

Encoder

Tensor Train Decomposition

W
=08

\

@ State transition is L-th order Markov transition to capture higher-order dynamics

ht - f(xta ht—h o 7ht—L)7

@ Tensor train decomposition to approximate the weight tensor
@ Polynomial interactions between the hidden states h; and z;
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Seq2Seq: Diffusion Convolutional RNNs [Li et al., 2018]

Diffusion Convolutional  Diffusion Convolutional  Diffusion Convolutional  Diffusion Convolutional

Recurrent Layer Recurrent Layer Recurrent Layer Recurrent Layer
s 7 = 5
[ 3PS [ 3P [ 3P [ e
Input Graph [ “o? “o? <o Predictions
si | o @ o @ o @ o @ * e
4 Ignals L L W L AR LW o
4 " —<GO>~ o ®
/&\G o7 ees RelU eee ees RelU eee LT
7 o e 1 e el o ;.
L™ P p—
’ L J
* o 0 0 ) T
oy “o? o [ S ) (8 ] |
. L ] L L ] 4 ] L ] | L ] |
¢ ¢ ¢ ¢ |
|
1 |
| | |
I { e === il P
Encoder Copy States Decoder

@ Pair-wise spatial correlations between traffic sensors as a directed graph

@ Diffusion convolution on the graphs
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Seq2Seq: Gated Recurrent Units (GRU) [Suilin, 2017]

Predictions
Encoder 4 0 0 )
| Yy Yo Yn-1 Yn
! | 2 [ [ [ |
GRU } { GRU ] { GRU } { GRU } % { GRU ] GRU } GRU ] GRU ‘
i 1 i [
X1 X2 Xn-1 Xn | | |
Historical data Decoder

https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

o Kaggle Wikipedia winning solution: GRU and GRU decoder

August 28th, 2018
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What about ATTENTION?

Lag is All You Need!

Prediction

Y
( ,—Q—Q—Q—D

Year ago

)
_O—\\ J
'\ . .

Quarter ago

N
_/

https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md
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Comparison: Canonical (One-to-One) vs. Seq2Seq (Many-to-Many)

Canonical (One-to-One) Seq2Seq (Many-to-Many)
Canonical e input features need to be available during prediction phase
@ no need to re-train for different prediction length (forecast horizon)
Seq2Seq e can have disjoint encoding and decoding features
@ needs re-training when changing the decoder length
Faloutsos et. al. (Amazon) August 28th, 2018
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So ... Neural Networks, huh?

When to use what for which types of time series?

MLPs are robust baseline methods, but requires heavy feature engineering

RNNs are, the de facto standard model for sequence modeling. Sometimes stability
problems in training.

Recent research [Miller and Hardt, 2018; Bai et al., 2018] advocates that CNNs are as
accurate but much more efficient

But people argue that dilated RNNs [Chang et al., 2017] are just as efficient ...
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So ... Neural Networks, huh?

When to use what for which types of time series?

MLPs are robust baseline methods, but requires heavy feature engineering

RNNs are, the de facto standard model for sequence modeling. Sometimes stability
problems in training.

Recent research [Miller and Hardt, 2018; Bai et al., 2018] advocates that CNNs are as
accurate but much more efficient

But people argue that dilated RNNs [Chang et al., 2017] are just as efficient ...

We do not know yet, but we will!

http://quantumfuture.net/quantum_future/homepage.htm
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Modern methods struggle with strategic forecasting problems

Weekly shipped units and forecast

variable

| A

v‘vwf

2016-01 2016-07 2017-01
Date

Predict overall Amazon retail demand years into the future.

Not enough data may be available for training, assumptions on long-term behaviour should be

handled properly. Use a classical, local model
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Modern models handle operational forecasting problems well

['F

i

Predict the demand for a each product available at Amazon

Time series are irregular, only combined to they have enough history and exhibit clear patterns.

Faloutsos et. al. (Amazon

)
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Finding the right balance: data vs model driven

Goals:
Prior (domain) . .
knowledge @ increase data efficiency: data efficiency improves

sample complexity

@ improve interpretability: interpretability facilitates
better decision-making

Learning from @ enforce structure: structure enables fast
data computation
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Combining Probabilistic Graphical Models (PGM) and DNN
Efficient inference of PGM with the flexibility and expressibility of DNN

VRNN/SSL/LSTM-

LDA [Chung et al.,, | DMM [Krishnan | KVAE/DVBF [Frac-

:tR;\:Nzol[g]raccaro 2015; Zaheer et al., | et al., 2017, | caro et al., 2017; Karl
B 2017; Zheng et al., | 2015] et al., 2017]

2017]

SEONS) ) © g
oo0-| 99 | 00 | §og

&) O -0
$66 | &

Further avenues: hybrid global-local models.
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Selected References

@ NN Forecasting in the early days: [Tang et al., 1991; Azoff, 1994; Gately, 1995; Zhang
et al., 1998]

e Convolution structure for sequence modeling: [Van Den Oord et al., 2016; Bai et al.,
2018]

@ Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting [Ghaderi et al., 2017]

@ Autoregressive Convolutional Neural Networks for Asynchronous Time Series [Bifikowski
et al., 2017]

@ Improving Factor-Based Quantitative Investing by Forecasting Company
Fundamentals [Alberg and Lipton, 2017]

o Time-series extreme event forecasting with neural networks at Uber [Laptev et al., 2017]

@ An overview and comparative analysis of recurrent neural networks for short term load
forecasting [Bianchi et al., 2017]
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Building Forecasting Systems: Old and New

Faloutsos et. al. (Amazon)



Pecularities of forecasting systems

Time plays a role: important for backtesting & evaluation

main primitive type are time series (one dimension more than usual)
difference between data at train and inference time

long feedback cycles (e.g., compare with recommender systems)

complex interaction with downstream decision problems

traditionally batch system, moving towards on-demand/real-time systems
B2B not B2C scenario

users are typically Business Intelligence officers, analysts, data scientists or business
functions

Faloutsos et. al. (Amazon) August 28th, 2018 115 / 140



Forecasting Systems: Two Extremes

predictions

network

VS

target, features 21,1 22,Tp 23,73

A complex pipeline of simple model vs. a complex model in a simple pipeline.

Example: m4 forecasting competition. Won by neural network approach, follow-up by
ensemble methods. [Makridakis et al., 2018]



Building Forecasting Systems with Classical Models
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Building Forecasting Systems with Classical Models

R

i

i

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

Faloutsos et. al. (Amazon)



Building Forecasting Systems with Classical Models
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Building Forecasting Systems with Classical Models
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Forecasting Systems with classical models

PROS

@ models are canonical and
relatively easy to understand

@ Decomposition — decoupling

@ White box: explicitly
model-based

@ Embarassingly parallel

Image (c) User:Colin / Wikimedia Commons / CC BY-SA 3.0

CONS

Requires lots manual work by
experts = hard to tune &
maintain

Cannot learn patterns across
time series = pipelines of
models must be used

Cannot handle cold-starts

Model-based: all effects need to
be explicitly modelled
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Notable Non-Advantages

interpretability even though each model may be interpretable, the pipeline is not.

running time even though each models runs quickly, entire pipeline does not — on-demand
forecasting hard to realize.

simple infrastructure forecasting pipeline require complex model combination mechanisms and
feature preprocessing.

further things maintainability, tunability, .. ..
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Forecasting System Architecture

Reporting Interactive Automated Hyp Col .
and Plotting Shell Feature Selection Tuning ' !

Sanity Checks Bundle Generation

Dataset Resolution Feature Learning
Algorithms Gating Generation Filtering

Data Cleaning Transformation
Join Processing Post—Processingl Iltem Routing Backtest Metrics Execution Metrics

Reporting Ensembling

Dataset Generation Plotting / Reporting

Figure from Probabilistic Demand Forecasting at Scale [Bose et al., 2017]
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Neural Forecasting Approaches

PROS

predictions #a, 75 . %6

oo e e e o litte feature engineering
ERSEX needed

network [ 7 [ X [ ) @ N ] . .
N -t o |earnS across time series

o o & & . @ quick at inference

o default settings lead to
surprinsingly good results

target, features 21,71 22,T3 23,T3

@ state-of-the art performance
in competitions

CONS

@ little control over
predictions

@ potentially high-variance in
training
@ costly to train

@ model serving infrastructure
needed

Recent public competitions won by neural forecasting approaches: m4 competiton, wikipedia

Kaggle competition.

Faloutsos et. al. (Amazon)
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Third Prinicple

Conservation law
Forecasting systems are complex. J

Classical forecasting system .
&%y Neural forecasting system

Simple Complex Simple Complex

forecasting model forecasting model

(. WRforecastingpipeline @ | forecastingpipeline

Naturally, combinations of both extremes are possible.
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Forecasting system are ML systems

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization

Shared Configuration Framework and Job Orchestration

.
Focus of this paper |

Data
Ingestion

~—

[

Data
Analysis

)l

Data Data Trainer Model Evaluation
Transformation Validation and Validation

=

Ty

Logging }--

Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

Faloutsos et. al. (Amazon)

Figure from [Polyzotis et al., 2017]
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systems: uncomprehensive laundry list of components

ETL & Data Provenance management

Data Cleaning, Imputation & monitoring (both for training and inference data)
feature transformation component

model training & experiment tracking

model ensembling

hyper-parameter optimization & Auto-ML/Meta-Learning

model serving & management

model monitoring

live testing: bandits & A/B tests

reporting & plotting & notebook

configuration & orchestration

Take away: many challenges. See more in [Modi et al., 2017].
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Selected References

TFX: [Modi et al., 2017; Polyzotis et al., 2017]

Spark-based ML: [Boehm et al., 2016; Meng et al., 2016; Sparks et al., 2017]
Declarative ML: [Schelter et al., 2016]

Data verification: [Schelter et al., 2018]

Missing data: [Biessmann et al., 2018]

Model serving: [Crankshaw et al., 2017, 2015]

Experiment and Meta-Data Tracking: [Schelter et al., 2017]
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Selected References: Forecasting competitions

M4 competition: [Makridakis et al., 2018] (and predecessors)
@ Winning entry: https://eng.uber.com/m4-forecasting-competition/
Kaggle competitions on forecasting:

@ Rossmann store sales: https://www.kaggle.com/c/rossmann-store-sales

o Wikipedia traffic forecast:
https://www.kaggle.com/c/web-traffic-time-series-forecasting
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Open-source forecasting packages: Classical methods

Rob Hyndman's R package [Hyndman et al., 2007] is among the most
popular packages. Contains implementations for many classic methods.
Very robust, very hard to beat. You have to like R.

PR o‘b HET Facebook’s Prophet package [Taylor and Letham, 2018] uses
Stan [Carpenter et al., 2017] behind the scences. Very flexible but the
inference is slow.
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Open-source deep forecasting packages

@Xnet 6 GLUON

MXNet/Gluon [Chen et al., 2015] contains a number of notebooks (linked from our website) to
get started, e.g., https://gluon.mxnet.io/chapter12_time-series/lds-scratch.html
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Forecasting Software: AWS SageMaker

Amazon Web Services @ o
@awscloud
1 [styie = {*description width's ‘inteial’}

You can now use the DeepAR algorithm for A

more accurate time series forecasting in § contidence-Intslider(nin=31, ma

oo samplesechackbostvaescrataey, T el
Amazon SageMaker! 5

continuous_update=False
Sl

customer id 181
forecast day 2
confidence » s

show_samples

Ak
Amazon cutting served model <o senerace prediceions for customer 101 starting at 2014-09-22 00500100
I e 12 Tiov ms

aws
~

12:55 PM - 28 Mar 2018

Visit our booth for the DeepAR Demo!
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THANK YOU FOR ATTENDING!

Website: https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/
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