
Database and Distributed Computing
Fundamentals of Blockchains

SujayaMaiyya, Victor Zakhary, DivyakantAgrawal, Amr El Abbadi

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅYou are your signature [ID, username and password]

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅYou are your signature [ID, username and password]

ÅLedger

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅYou are your signature [ID, username and password]

ÅLedger
ÅThe balance of each identity (saved in a DB)

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅYou are your signature [ID, username and password]

ÅLedger
ÅThe balance of each identity (saved in a DB)

ÅTransactions

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅYou are your signature [ID, username and password]

ÅLedger
ÅThe balance of each identity (saved in a DB)

ÅTransactions
ÅMove money from one identity to another

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅYou are your signature [ID, username and password]

ÅLedger
ÅThe balance of each identity (saved in a DB)

ÅTransactions
ÅMove money from one identity to another
ÅConcurrency control to serialize transactions (prevent double spending)

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅYou are your signature [ID, username and password]

ÅLedger
ÅThe balance of each identity (saved in a DB)

ÅTransactions
ÅMove money from one identity to another
ÅConcurrency control to serialize transactions (prevent double spending)
ÅTypically backed by a transactions log

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅYou are your signature [ID, username and password]

ÅLedger
ÅThe balance of each identity (saved in a DB)

ÅTransactions
ÅMove money from one identity to another
ÅConcurrency control to serialize transactions (prevent double spending)
ÅTypically backed by a transactions log
ÅLog is persistent

DSL

Traditional Banking Systems

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅYou are your signature [ID, username and password]

ÅLedger
ÅThe balance of each identity (saved in a DB)

ÅTransactions
ÅMove money from one identity to another
ÅConcurrency control to serialize transactions (prevent double spending)
ÅTypically backed by a transactions log
ÅLog is persistent
ÅLog is immutable and tamper-free (end-users trust this)

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Traditional Banking Systems

DSL

Bitcoin

DSL

Bitcoin

DSL

Bitcoin

DSL

Bitcoin: A Peer-to-Peer Electronic Cash System

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅPublic/Private key pair

ÅLedger
ÅThe balance of each identity (saved in the blockchain)

ÅTransactions
ÅMove bitcoins from one identity to another
ÅConcurrency control to serialize transactions (Mining and PoW)
ÅTypically backed by a transactions log (blockchain)
ÅLog is persistent (replicated across the network nodes)
ÅLog is immutable and tamper-free (PoWand Hash pointers)

DSL

Digital Signatures

DSL

Digital Signatures

ÅPk, Skă Keygen(keysize)
Pk Sk

DSL

Digital Signatures

ÅPk, Skă Keygen(keysize)

ÅYour Pk is your identity (username, e-mail address)
Pk Sk

DSL

Digital Signatures

ÅPk, Skă Keygen(keysize)

ÅYour Pk is your identity (username, e-mail address)

ÅYour Sk is your signature (password)

ÅPk is made public and used to verify documents signed by Sk

ÅSk is private

Pk Sk

DSL

Digital Signatures

ÅPk is made public and used to verify documents signed by Sk

ÅSk is private
Pk Sk

DSL

Digital Signatures

ÅPk is made public and used to verify documents signed by Sk

ÅSk is private

Document Sk

Pk Sk

DSL

Digital Signatures

ÅPk is made public and used to verify documents signed by Sk

ÅSk is private

Document Sk

Sign()

Pk Sk

DSL

Digital Signatures

ÅPk is made public and used to verify documents signed by Sk

ÅSk is private

Document Sk

Sign()

Signature

Pk Sk

DSL

Digital Signatures

ÅPk is made public and used to verify documents signed by Sk

ÅSk is private

Document Sk

Sign()

Signature

Document Pk Signature

Pk Sk

DSL

Digital Signatures

ÅPk is made public and used to verify documents signed by Sk

ÅSk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Pk Sk

DSL

Digital Signatures

ÅPk is made public and used to verify documents signed by Sk

ÅSk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid

Pk Sk

DSL

Digital Signatures

ÅPk is made public and used to verify documents signed by Sk

ÅSk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

Pk Sk

DSL

Digital Signatures

ÅPk is made public and used to verify documents signed by Sk

ÅSk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

Pk Sk

Used for Authentication not privacy

DSL

Digital Signatures

ÅUnique to the signed document

ÅMathematically hard to forge

ÅMathematically easy to verify

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

ÅAlice wants to move a bitcoin to Bob

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

ÅAlice wants to move a bitcoin to Bob

Pk-Bob

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

ÅAlice wants to move a bitcoin to Bob

Pk-Bob

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

ÅAlice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

ÅAlice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

ÅAlice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

ÅAlice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

ÅAlice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob Pk-Alice SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

ÅAlice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob Pk-Alice SignatureAlice-Bob

Verify()

DSL

Digital Signatures and Bitcoin

ÅA bitcoin is a chain of digital signatures
ÅCoin owners digitally sign their coins to transfer them to other recipients

ÅAlice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob Pk-Alice SignatureAlice-Bob

Verify()

Valid

DSL

Digital Signatures and Bitcoin

ÅNow what if Bob wants to move his coins to Diana

DSL

Digital Signatures and Bitcoin

ÅNow what if Bob wants to move his coins to Diana

SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

ÅNow what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

ÅNow what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana Sk-Bob

SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

ÅNow what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana Sk-Bob

Sign()

SignatureAlice-Bob

DSL

Digital Signatures and Bitcoin

ÅNow what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana Sk-Bob

Sign()

SignatureBob-Diana

SignatureAlice-Bob

DSL

A Bitcoin Big Picture

DSL

A Bitcoin Big Picture

SignatureΧ-Alice

DSL

A Bitcoin Big Picture

SignatureΧ-Alice Pk-Bob

DSL

A Bitcoin Big Picture

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign()

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign()

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-Χ.

DSL

A Bitcoin Big Picture

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-Χ.

Sign()Sk-Diana
ΧΧ.

DSL

What AboutΩs?

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-Χ.

Sign()Sk-Diana
ΧΧ.

DSL

What AboutΩs?

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-Χ.

Sign()Sk-Diana
ΧΧ.

What is this combinationfunction?

DSL

What AboutΩs?

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-Χ.

Sign()Sk-Diana
ΧΧ.

What is this combinationfunction?

What is double spending
and how to prevent it?

DSL

What AboutΩs?

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-Χ.

Sign()Sk-Diana
ΧΧ.

What is this combinationfunction?

What does the first
signaturelook like?

What is double spending
and how to prevent it?

DSL

Hashing H(x) SignatureAlice-Bob Pk-Diana

DSL

Hashing H(x)

ÅSignatures and public keys are combined using Hashing

SignatureAlice-Bob Pk-Diana

DSL

Hashing H(x)

ÅSignatures and public keys are combined using Hashing

ÅTakes anystring x of any lengthas input

ÅFixedoutput size (e.g., 256 bits)

SignatureAlice-Bob Pk-Diana

DSL

Hashing H(x)

ÅSignatures and public keys are combined using Hashing

ÅTakes anystring x of any lengthas input

ÅFixedoutput size (e.g., 256 bits)

ÅEfficiently computable.

ÅSatisfies:
ÅCollision Free: no two x, y s.t. H(x) = H(y)
ÅMessage digest.

ÅHiding: Given H(x) infeasible to find x (one-way hash function)
ÅCommitment: commit to a value and reveal later

ÅPuzzle Friendly: Given a random puzzle ID and a target set Y it is hard to find x such
that: H(ID | x) ʁ Y

SignatureAlice-Bob Pk-Diana

DSL

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

DSL

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

DSL

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

DSL

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

SHA256(abc) =
ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

DSL

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

SHA256(abc) =
ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

SHA256(abC) =
0a2432a1e349d8fdb9bfca91bba9e9f2836990fe937193d84deef26c6f3b8f76

DSL

What About's?

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-Χ.

Sign()Sk-Diana
ΧΧ.

What is this combinationfunction?

What does the first
signaturelook like?

What is double spending
and how to prevent it?

DSL

What About's?

SignatureAlice-Bob

SignatureΧ-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-Χ.

Sign()Sk-Diana
ΧΧ.

What is this combinationfunction?

What does the first
signaturelook like?

What is double spending
and how to prevent it?

DSL

Double Spending

ÅSpending the same digital cash asset more than once

ÅImpossible to do in physical cash

ÅPrevented in traditional banking systems through concurrency control

DSL

Double Spending

ÅSpending the same digital cash asset more than once

ÅImpossible to do in physical cash

ÅPrevented in traditional banking systems through concurrency control

SignatureAlice-Bob

DSL

Double Spending

ÅSpending the same digital cash asset more than once

ÅImpossible to do in physical cash

ÅPrevented in traditional banking systems through concurrency control

SignatureAlice-Bob

SignatureAlice-Bob

DSL

Double Spending

ÅSpending the same digital cash asset more than once

ÅImpossible to do in physical cash

ÅPrevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob Pk-Marty

DSL

Double Spending

ÅSpending the same digital cash asset more than once

ÅImpossible to do in physical cash

ÅPrevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob Pk-Marty

DSL

Double Spending

ÅSpending the same digital cash asset more than once

ÅImpossible to do in physical cash

ÅPrevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Sign()

Sk-Bob

Pk-Marty Sk-Bob

Sign()

DSL

Double Spending

ÅSpending the same digital cash asset more than once

ÅImpossible to do in physical cash

ÅPrevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Sign()

Sk-Bob

Pk-Marty

SignatureBob-Diana

Sk-Bob

SignatureBob-Marty

Sign()

DSL

Double Spending

ÅSpending the same digital cash asset more than once

ÅImpossible to do in physical cash

ÅPrevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Sign()

Sk-Bob

Pk-Marty

SignatureBob-Diana

Sk-Bob

SignatureBob-Marty

Sign()

I took her car

I took his ring

DSL

Double Spending Prevention

ÅCentralized

DSL

Double Spending Prevention

ÅCentralized
ÅTransactions on coins go through a trusted 3rd party (Trent)

DSL

Double Spending Prevention

ÅCentralized
ÅTransactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

DSL

Double Spending Prevention

ÅCentralized
ÅTransactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

DSL

Double Spending Prevention

ÅCentralized
ÅTransactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

SignatureTrent-Bob

DSL

Double Spending Prevention

ÅCentralized
ÅTransactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

WasnΩt spent
before? Good

SignatureTrent-Bob

DSL

Double Spending Prevention

ÅCentralized
ÅTransactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

WasnΩt spent
before? Good

DSL

Double Spending Prevention

ÅCentralized
ÅTransactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

WasnΩt spent
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

DSL

Double Spending Prevention

ÅCentralized
ÅTransactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

WasnΩt spent
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

DSL

Double Spending Prevention

ÅCentralized
ÅTransactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

WasnΩt spent
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

Same old, same old!

DSL

Double Spending Prevention

ÅDecentralized

DSL

Double Spending Prevention

ÅDecentralized
ÅA network of nodes maintains a ledger

DSL

Double Spending Prevention

ÅDecentralized
ÅA network of nodes maintains a ledger

ÅNetwork nodes work to agree on transactions order
ÅSerializing transactions on every coin prevents double spending

DSL

Double Spending Prevention

ÅDecentralized
ÅA network of nodes maintains a ledger

ÅNetwork nodes work to agree on transactions order
ÅSerializing transactions on every coin prevents double spending

ÅWhat is the ledger?

DSL

Double Spending Prevention

ÅDecentralized
ÅA network of nodes maintains a ledger

ÅNetwork nodes work to agree on transactions order
ÅSerializing transactions on every coin prevents double spending

ÅWhat is the ledger?

ÅHow to agree on transaction order?

DSL

Double Spending Prevention

ÅDecentralized
ÅA network of nodes maintains a ledger

ÅNetwork nodes work to agree on transactions order
ÅSerializing transactions on every coin prevents double spending

ÅWhat is the ledger?

ÅHow to agree on transaction order?

ÅWhat incentives network nodes to maintain the ledger?

DSL

What is the Ledger?

DSL

What is the Ledger?

ÅBlockchain

DSL

What is the Ledger?

ÅBlockchain

DSL

What is the Ledger?

ÅBlockchain

ÅTransactions are grouped into blocks

DSL

What is the Ledger?

ÅBlockchain

ÅTransactions are grouped into blocks
ÅBlocks are chained to each other through pointers (Hence blockchain)

DSL

What is the Ledger?

ÅBlockchain

ÅTransactions are grouped into blocks
ÅBlocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

DSL

What is the Ledger?

ÅBlockchain

ÅTransactions are grouped into blocks
ÅBlocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

What is the Ledger?

ÅBlockchain

ÅTransactions are grouped into blocks
ÅBlocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

What is the Ledger?

ÅBlockchain

ÅTransactions are grouped into blocks
ÅBlocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

.

DSL

What is the Ledger?

ÅBlockchain

ÅTransactions are grouped into blocks
ÅBlocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

.

DSL

The LedgerΩs What About's?

DSL

The LedgerΩs What About's?

ÅWhere is the ledger stored?

DSL

The LedgerΩs What About's?

ÅWhere is the ledger stored?
ÅEach network node maintains its copy of the ledger

DSL

The LedgerΩs What About's?

ÅWhere is the ledger stored?
ÅEach network node maintains its copy of the ledger

ÅHow is the ledger tamper-free?

DSL

The LedgerΩs What About's?

ÅWhere is the ledger stored?
ÅEach network node maintains its copy of the ledger

ÅHow is the ledger tamper-free?
1. Blocks are connected through hash-pointers

Hash() Hash() Hash()

DSL

The LedgerΩs What About's?

ÅWhere is the ledger stored?
ÅEach network node maintains its copy of the ledger

ÅHow is the ledger tamper-free?
1. Blocks are connected through hash-pointers
ÅEach block contains the hash of the previous block

ÅThis hash gives each block its location in the blockchain

ÅTampering with the content of any block can easily be detected (is this enough? NO)

Hash() Hash() Hash()

DSL

Tampering with the Ledger

Hash() Hash() Hash()

DSL

Tampering with the Ledger

Hash() Hash() Hash()

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Inconsistent Blockchain

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

However,

Inconsistent Blockchain

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Hash() Hash() Hash()

TX1

TX2

However,

Inconsistent Blockchain

DSL

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Hash() Hash() Hash()

TX1

TX2

However,

Consistent Blockchain

Inconsistent Blockchain

DSL

The LedgerΩs What AboutΩs?

ÅHow is the ledger tamper-free?
1. Blocks are connected through hash-pointers
ÅEach block contains the hash of the previous block

ÅThis hash gives each block its location in the blockchain

ÅTampering the content of any block can easily be detected (is this enough? NO)

DSL

The LedgerΩs What AboutΩs?

ÅHow is the ledger tamper-free?
1. Blocks are connected through hash-pointers
ÅEach block contains the hash of the previous block

ÅThis hash gives each block its location in the blockchain

ÅTampering the content of any block can easily be detected (is this enough? NO)

2. Replacing a consistent blockchain with another tampered consistent block
chain should be made very hard, How?

DSL

NetworkNodesBig Picture

DSL

NetworkNodesBig Picture

DSL

NetworkNodesBig Picture

DSL

Making Progress

DSL

Making Progress

ÅThe ledger is fully replicated to all network nodes

DSL

Making Progress

ÅThe ledger is fully replicated to all network nodes

ÅTo make progress:

DSL

Making Progress

ÅThe ledger is fully replicated to all network nodes

ÅTo make progress:
ÅNetwork nodes group new transactions into a block

DSL

Making Progress

ÅThe ledger is fully replicated to all network nodes

ÅTo make progress:
ÅNetwork nodes group new transactions into a block

ÅBlocks are fixed in size (1MB)

DSL

Making Progress

ÅThe ledger is fully replicated to all network nodes

ÅTo make progress:
ÅNetwork nodes group new transactions into a block

ÅBlocks are fixed in size (1MB)

ÅNetwork nodes validatenew transactions to make sure that:

DSL

Making Progress

ÅThe ledger is fully replicated to all network nodes

ÅTo make progress:
ÅNetwork nodes group new transactions into a block

ÅBlocks are fixed in size (1MB)

ÅNetwork nodes validatenew transactions to make sure that:
ÅTransactions on the new block do not conflictwith each other

ÅTransactions on the new block do not conflict with previous blocks transactions

DSL

Making Progress

ÅThe ledger is fully replicated to all network nodes

ÅTo make progress:
ÅNetwork nodes group new transactions into a block

ÅBlocks are fixed in size (1MB)

ÅNetwork nodes validatenew transactions to make sure that:
ÅTransactions on the new block do not conflictwith each other

ÅTransactions on the new block do not conflict with previous blocks transactions

ÅNetwork nodes need to agree on the next block to be added to the blockchain

DSL

Making Progress

ÅThe ledger is fully replicated to all network nodes

ÅTo make progress:
ÅNetwork nodes group new transactions into a block

ÅBlocks are fixed in size (1MB)

ÅNetwork nodes validatenew transactions to make sure that:
ÅTransactions on the new block do not conflictwith each other

ÅTransactions on the new block do not conflict with previous blocks transactions

ÅNetwork nodes need to agree on the next block to be added to the blockchain

Consensus

DSL

Consensus

ÅTypes of systems: synchronous and asynchronous

DSL

Consensus

ÅTypes of systems: synchronous and asynchronous

ÅProblem statement: given n processes and one leader:
ÅAgreement: all correct processes agree on the same value
ÅValidity: If initiator does not fail, all correct processes agree on its value

DSL

Consensus

ÅTypes of systems: synchronous and asynchronous

ÅProblem statement: given n processes and one leader:
ÅAgreement: all correct processes agree on the same value
ÅValidity: If initiator does not fail, all correct processes agree on its value

ÅTypes of failure:
ÅCrash
ÅMalicious (or Byzantine)

DSL

Consensus

ÅTypes of systems: synchronous and asynchronous

ÅProblem statement: given n processes and one leader:
ÅAgreement: all correct processes agree on the same value
ÅValidity: If initiator does not fail, all correct processes agree on its value

ÅTypes of failure:
ÅCrash
ÅMalicious (or Byzantine)

ÅImportant Impossibility Results:

DSL

Consensus

ÅTypes of systems: synchronous and asynchronous

ÅProblem statement: given n processes and one leader:
ÅAgreement: all correct processes agree on the same value
ÅValidity: If initiator does not fail, all correct processes agree on its value

ÅTypes of failure:
ÅCrash
ÅMalicious (or Byzantine)

ÅImportant Impossibility Results:
ÅFLP, in asynchronoussystems:
ÅWith even 1 crash failure, termination isnΩt guaranteed (no liveness)

DSL

Consensus

ÅTypes of systems: synchronous and asynchronous

ÅProblem statement: given n processes and one leader:
ÅAgreement: all correct processes agree on the same value
ÅValidity: If initiator does not fail, all correct processes agree on its value

ÅTypes of failure:
ÅCrash
ÅMalicious (or Byzantine)

ÅImportant Impossibility Results:
ÅFLP, in asynchronoussystems:
ÅWith even 1 crash failure, termination isnΩt guaranteed (no liveness)

ÅSynchronous systems:
ÅTermination is guaranteed if number of failed malicious processes (f) is at most 1/3 n

DSL

(Multi-) Paxos

DSL

(Multi-) Paxos

ÅPaxos is a consensus algorithm
ÅProcesses want to agree on a value (e.g., the next block to be added to the chain)

DSL

(Multi-) Paxos

ÅPaxos is a consensus algorithm
ÅProcesses want to agree on a value (e.g., the next block to be added to the chain)

ÅPaxos is currently used to manage local data in global-scale systems
ÅSpanner [OSDIΩ12, SIGMODΩ17], Megastore [CIDRΩ11], etc

DSL

(Multi-) Paxos

ÅPaxos is a consensus algorithm
ÅProcesses want to agree on a value (e.g., the next block to be added to the chain)

ÅPaxos is currently used to manage local data in global-scale systems
ÅSpanner [OSDIΩ12, SIGMODΩ17], Megastore [CIDRΩ11], etc

ÅMulti-Paxos, simplified:

A

Majority

DSL

(Multi-) Paxos

ÅPaxos is a consensus algorithm
ÅProcesses want to agree on a value (e.g., the next block to be added to the chain)

ÅPaxos is currently used to manage local data in global-scale systems
ÅSpanner [OSDIΩ12, SIGMODΩ17], Megastore [CIDRΩ11], etc

ÅMulti-Paxos, simplified:
ÅInitially, a leader is elected by a majority quorum

Leader
Election

A

Majority

DSL

(Multi-) Paxos

ÅPaxos is a consensus algorithm
ÅProcesses want to agree on a value (e.g., the next block to be added to the chain)

ÅPaxos is currently used to manage local data in global-scale systems
ÅSpanner [OSDIΩ12, SIGMODΩ17], Megastore [CIDRΩ11], etc

ÅMulti-Paxos, simplified:
ÅInitially, a leader is elected by a majority quorum

ÅReplication: Leader replicates new updates to a majority quorum

Leader
Election

A

Majority

DSL

(Multi-) Paxos

ÅPaxos is a consensus algorithm
ÅProcesses want to agree on a value (e.g., the next block to be added to the chain)

ÅPaxos is currently used to manage local data in global-scale systems
ÅSpanner [OSDIΩ12, SIGMODΩ17], Megastore [CIDRΩ11], etc

ÅMulti-Paxos, simplified:
ÅInitially, a leader is elected by a majority quorum

ÅReplication: Leader replicates new updates to a majority quorum

Leader
Election

Replication

A

Majority

DSL

(Multi-) Paxos

ÅPaxos is a consensus algorithm
ÅProcesses want to agree on a value (e.g., the next block to be added to the chain)

ÅPaxos is currently used to manage local data in global-scale systems
ÅSpanner [OSDIΩ12, SIGMODΩ17], Megastore [CIDRΩ11], etc

ÅMulti-Paxos, simplified:
ÅInitially, a leader is elected by a majority quorum

ÅReplication: Leader replicates new updates to a majority quorum

Leader
Election

Replication Replication

A

Majority

DSL

(Multi-) Paxos

ÅPaxos is a consensus algorithm
ÅProcesses want to agree on a value (e.g., the next block to be added to the chain)

ÅPaxos is currently used to manage local data in global-scale systems
ÅSpanner [OSDIΩ12, SIGMODΩ17], Megastore [CIDRΩ11], etc

ÅMulti-Paxos, simplified:
ÅInitially, a leader is elected by a majority quorum

ÅReplication: Leader replicates new updates to a majority quorum

ÅLeader Election: If the leader fails, a new leader is elected

Leader
Election

Replication Replication

A

Majority

DSL

Can Network Nodes Use Paxos?

DSL

Can Network Nodes Use Paxos?

DSL

Can Network Nodes Use Paxos?

DSL

PaxosConsensus

DSL

PaxosConsensus

ÅAll participants should be known a priori

DSL

PaxosConsensus

ÅAll participants should be known a priori
ÅPermissionedvs Permissionlesssettings

DSL

PaxosConsensus

ÅAll participants should be known a priori
ÅPermissionedvs Permissionlesssettings

ÅPermissionlesssetting:
ÅNetwork nodes freely join or leave the network at anytime

DSL

PaxosConsensus

ÅAll participants should be known a priori
ÅPermissionedvs Permissionlesssettings

ÅPermissionlesssetting:
ÅNetwork nodes freely join or leave the network at anytime

ÅTolerates only Crashfailures

DSL

PaxosConsensus

ÅAll participants should be known a priori
ÅPermissionedvs Permissionlesssettings

ÅPermissionlesssetting:
ÅNetwork nodes freely join or leave the network at anytime

ÅTolerates only Crashfailures
ÅHowever, network nodes can be Malicious

DSL

PaxosConsensus

ÅAll participants should be known a priori
ÅPermissionedvs Permissionlesssettings

ÅPermissionlesssetting:
ÅNetwork nodes freely join or leave the network at anytime

ÅTolerates only Crashfailures
ÅHowever, network nodes can be Malicious

ÅTo make progress, at least 1/ 2 of the participants should be alive

ÅProgress is not guaranteed (FLP impossibility)

DSL

PaxosConsensus

ÅAll participants should be known a priori
ÅPermissionedvs Permissionlesssettings

ÅPermissionlesssetting:
ÅNetwork nodes freely join or leave the network at anytime

ÅTolerates only Crashfailures
ÅHowever, network nodes can be Malicious

ÅTo make progress, at least 1/ 2 of the participants should be alive

ÅProgress is not guaranteed (FLP impossibility)

ÅAlso, Paxos has high network overhead

DSL

PracticalByzantine Fault Tolerance (PBFT)

DSL

PracticalByzantine Fault Tolerance (PBFT)

ÅGoal: Implement a deterministic replication service with arbitrary
malicious faultsin an asynchronous environment

DSL

PracticalByzantine Fault Tolerance (PBFT)

ÅGoal: Implement a deterministic replication service with arbitrary
malicious faultsin an asynchronous environment

ÅNo assumptions about faulty behavior

ÅNo bounds on delays

DSL

PracticalByzantine Fault Tolerance (PBFT)

ÅGoal: Implement a deterministic replication service with arbitrary
malicious faultsin an asynchronous environment

ÅNo assumptions about faulty behavior

ÅNo bounds on delays

ÅProvides safety in asynchronous system and assume eventual time bounds
for liveness

DSL

PracticalByzantine Fault Tolerance (PBFT)

ÅGoal: Implement a deterministic replication service with arbitrary
malicious faultsin an asynchronous environment

ÅNo assumptions about faulty behavior

ÅNo bounds on delays

ÅProvides safety in asynchronous system and assume eventual time bounds
for liveness

ÅAssumptions:

DSL

PracticalByzantine Fault Tolerance (PBFT)

ÅGoal: Implement a deterministic replication service with arbitrary
malicious faultsin an asynchronous environment

ÅNo assumptions about faulty behavior

ÅNo bounds on delays

ÅProvides safety in asynchronous system and assume eventual time bounds
for liveness

ÅAssumptions:
Å3f+1 replicas to tolerate f Byzantine faults (optimal)

DSL

PracticalByzantine Fault Tolerance (PBFT)

ÅGoal: Implement a deterministic replication service with arbitrary
malicious faultsin an asynchronous environment

ÅNo assumptions about faulty behavior

ÅNo bounds on delays

ÅProvides safety in asynchronous system and assume eventual time bounds
for liveness

ÅAssumptions:
Å3f+1 replicas to tolerate f Byzantine faults (optimal)
Åquorums have at least 2f+1 replicas
Åquorums intersect in f+1, hence have at least one correct replica

ÅStrong cryptography
ÅOnly for liveness: eventual time bounds 3f+1 replicas

quorum A quorum B

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

(1) A client sends a request for a service to the primary

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

(2) The primary multicasts the request to the backups

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

(3) Backups multicast PREPAREmessage

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

(4) If a replica receives at least 2f matching PREPAREmessage, multicasts a COMMITmessage

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

(5) If a replica receives at least 2f COMMITmessages, reply the result to the client

DSL

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests (2) prepareensures
order within views, (3) commit ensures order across views

(6) The client waits for f+1 replies from different replicas with the sameresult

DSL

PBFT Consensus

ÅTolerates Byzantine (Malicious) failures
ÅTo make progress, at least 2/ 3 of the participants should be correct

ÅProgress is not guaranteed (FLP impossibility)

ÅHowever, PBFT is Permissioned
ÅAll participants should be known a priori

ÅAlso, PBFT has high network overhead O(N2) [number of messages]
ÅEvery node multi-casts their responses to every other node

DSL

DSL

DSL

DSL

DSL

DSL

ΧΧ

DSL

ΧΧ

DSL

ΧΧ

DSL

ΧΧ

DSL

ΧΧ

DSL

NakamotoΩs Consensus

ÅIntuitively, network nodes race to solve a puzzle

ÅThis puzzle is computationally expensive

ÅOnce a network node finds (mines) a solution:
ÅIt adds its block of transactions to the blockchain

ÅIt multi-casts the solution to other network nodes

ÅOther network nodes accept and verify the solution

DSL

Mining Details

DSL

Mining Details

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1 TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1 TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1 TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn
.
.
.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn
.
.
.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Å TXreward is self signed (also called coinbase transaction)

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Å TXreward is self signed (also called coinbase transaction)
Å TXreward is bitcoinΩs way to create new coins

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Å TXreward is self signed (also called coinbase transaction)
Å TXreward is bitcoinΩs way to create new coins
Å The reward value is halved every 4 years (210,000 blocks)

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Å TXreward is self signed (also called coinbase transaction)
Å TXreward is bitcoinΩs way to create new coins
Å The reward value is halved every 4 years (210,000 blocks)
Å Currently, itΩs 12.5 Bitcoins per block

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Å TXreward is self signed (also called coinbase transaction)
Å TXreward is bitcoinΩs way to create new coins
Å The reward value is halved every 4 years (210,000 blocks)
Å Currently, itΩs 12.5 Bitcoins per block
Å Incentives network nodes to mine

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Å D: dynamically adjusted difficulty

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Å D: dynamically adjusted difficulty
256 bits

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Å D: dynamically adjusted difficulty
256 bits

Difficulty bits

DSL

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Å D: dynamically adjusted difficulty

Å Difficulty is adjusted every 2016 blocks (almost 2 weeks)

256 bits

Difficulty bits

DSL

Difficulty

DSL

Difficulty

ÅAdjust difficulty every 2016 blocks

DSL

Difficulty

ÅAdjust difficulty every 2016 blocks

ÅExpected20160 mins to mine (10 mins per block)

DSL

Difficulty

ÅAdjust difficulty every 2016 blocks

ÅExpected20160 mins to mine (10 mins per block)

ÅActualtime = timestamp of block 2016 ςtime stamp of block 1

DSL

Difficulty

ÅAdjust difficulty every 2016 blocks

ÅExpected20160 mins to mine (10 mins per block)

ÅActualtime = timestamp of block 2016 ςtime stamp of block 1

ÅNew_difficulty = old_difficulty * expected/actual

DSL

Difficulty

ÅAdjust difficulty every 2016 blocks

ÅExpected20160 mins to mine (10 mins per block)

ÅActualtime = timestamp of block 2016 ςtime stamp of block 1

ÅNew_difficulty = old_difficulty * expected/actual

ÅDifficulty decreases if actual > expected, otherwise, increases

DSL

Mining Big Picture

DSL

Mining Big Picture

DSL

