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Bitcoin: A Peer-to-Peer Electronic Cash System

ÅFrom Database and Distributed Computing Perspective

ÅIdentities and Signatures
ÅPublic/Private key pair

ÅLedger
ÅThe balance of each identity (saved in the blockchain)

ÅTransactions
ÅMove bitcoins from one identity to another
ÅConcurrency control to serialize transactions (Mining and PoW)
ÅTypically backed by a transactions log (blockchain)
ÅLog is persistent (replicated across the network nodes)
ÅLog is immutable and tamper-free (PoWand Hash pointers)
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ÅPk is made public and used to verify documents signed by Sk

ÅSk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()
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Pk Sk

Used for Authentication not privacy
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ÅMathematically hard to forge
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Hashing H(x)

ÅSignatures and public keys are combined using Hashing 

ÅTakes anystring x of any lengthas input

ÅFixedoutput size (e.g., 256 bits)

ÅEfficiently computable.

ÅSatisfies:
ÅCollision Free: no two x, y s.t. H(x) = H(y)
ÅMessage digest.

ÅHiding: Given H(x) infeasible to find x (one-way hash function)
ÅCommitment: commit to a value and reveal later

ÅPuzzle Friendly: Given a random puzzle ID and a target set Y it is hard to find x such 
that:  H(ID | x) ʁ Y
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Double Spending Prevention

ÅCentralized
ÅTransactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20 
coins to Diana

WasnΩt spent 
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

Same old, same old!
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Double Spending Prevention

ÅDecentralized
ÅA network of nodes maintains a ledger

ÅNetwork nodes work to agree on transactions order
ÅSerializing transactions on every coin prevents double spending

ÅWhat is the ledger?

ÅHow to agree on transaction order?

ÅWhat incentives network nodes to maintain the ledger? 
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The LedgerΩs What AboutΩs?

ÅHow is the ledger tamper-free?
1. Blocks are connected through hash-pointers
ÅEach block contains the hash of the previous block

ÅThis hash gives each block its location in the blockchain

ÅTampering the content of any block can easily be detected (is this enough? NO)

2. Replacing a consistent blockchain with another tampered consistent block 
chain should be made very hard, How?
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ÅTypes of systems:  synchronous and asynchronous

ÅProblem statement:  given n processes and one leader:
ÅAgreement:  all correct processes agree on the same value
ÅValidity:  If initiator does not fail, all correct processes agree on its value

ÅTypes of failure:
ÅCrash
ÅMalicious (or Byzantine)

ÅImportant Impossibility Results:
ÅFLP, in asynchronoussystems:
ÅWith even 1 crash failure, termination isnΩt guaranteed (no liveness)

ÅSynchronous systems:  
ÅTermination is guaranteed if number of failed malicious processes (f) is at most 1/3 n
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(Multi-) Paxos

ÅPaxos is a consensus algorithm
ÅProcesses want to agree on a value (e.g., the next block to be added to the chain)

ÅPaxos is currently used to manage local data in global-scale systems
ÅSpanner [OSDIΩ12, SIGMODΩ17], Megastore [CIDRΩ11],  etc

ÅMulti-Paxos, simplified:
ÅInitially, a leader is elected by a majority quorum

ÅReplication: Leader replicates new updates to a majority quorum

ÅLeader Election: If the leader fails, a new leader is elected

Leader
Election

Replication Replication

A

Majority
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ÅAll participants should be known a priori
ÅPermissionedvs Permissionlesssettings

ÅPermissionlesssetting:
ÅNetwork nodes freely join or leave the network at anytime

ÅTolerates only Crashfailures
ÅHowever, network nodes can be Malicious

ÅTo make progress, at least 1/ 2 of the participants should be alive

ÅProgress is not guaranteed (FLP impossibility)

ÅAlso, Paxos has high network overhead
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PracticalByzantine Fault Tolerance (PBFT)

ÅGoal: Implement a deterministic replication service with arbitrary 
malicious faultsin an asynchronous environment

ÅNo assumptions about faulty behavior

ÅNo bounds on delays

ÅProvides safety in asynchronous system and assume eventual time bounds 
for liveness

ÅAssumptions:
Å3f+1 replicas to tolerate f Byzantine faults (optimal)
Åquorums have at least 2f+1 replicas
Åquorums intersect in f+1, hence have at least one correct replica

ÅStrong cryptography
ÅOnly for liveness: eventual time bounds 3f+1 replicas

quorum A quorum B
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(1) A client sends a request for a service to the primary
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replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests   (2) prepareensures 
order within views, (3) commit ensures order across views

(4) If a replica receives at least 2f matching PREPAREmessage, multicasts a COMMITmessage
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replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests   (2) prepareensures 
order within views, (3) commit ensures order across views

(5) If a replica receives at least 2f COMMITmessages, reply the result to the client
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replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-preparepicks order of requests   (2) prepareensures 
order within views, (3) commit ensures order across views

(6) The client waits for f+1 replies from different replicas with the sameresult
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PBFT Consensus

ÅTolerates Byzantine (Malicious) failures
ÅTo make progress, at least 2/ 3 of the participants should be correct

ÅProgress is not guaranteed (FLP impossibility)

ÅHowever, PBFT is Permissioned
ÅAll participants should be known a priori

ÅAlso, PBFT has high network overhead O(N2) [number of messages]
ÅEvery node multi-casts their responses to every other node
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NakamotoΩs Consensus

ÅIntuitively, network nodes race to solve a puzzle

ÅThis puzzle is computationally expensive

ÅOnce a network node finds (mines) a solution:
ÅIt adds its block of transactions to the blockchain

ÅIt multi-casts the solution to other network nodes

ÅOther network nodes accept and verify the solution
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Å TXreward is self signed (also called coinbase transaction)
Å TXreward is bitcoinΩs way to create new coins
Å The reward value is halved every 4 years (210,000 blocks)
Å Currently, itΩs 12.5 Bitcoins per block
Å Incentives network nodes to mine 
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Å D: dynamically adjusted difficulty

Å Difficulty is adjusted every 2016 blocks (almost 2 weeks)

256 bits

Difficulty bits
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Difficulty

ÅAdjust difficulty every 2016 blocks

ÅExpected20160 mins to mine (10 mins per block)

ÅActualtime = timestamp of block 2016 ςtime stamp of block 1

ÅNew_difficulty = old_difficulty * expected/actual

ÅDifficulty decreases if actual > expected, otherwise, increases

DSL



Mining Big Picture

DSL



Mining Big Picture

DSL




